CHAPTER 1 Limits and Their Properties

Section 1.1	A Preview of Calculus
Section 1.2	Finding Limits Graphically and Numerically 305
Section 1.3	Evaluating Limits Analytically
Section 1.4	Continuity and One-Sided Limits
Section 1.5	Infinite Limits
Review Exerc	tises
Problem Solv	ing

CHAPTER 1 Limits and Their Properties

Section 1.1 A Preview of Calculus

Solutions to Even-Numbered Exercises

- 2. Calculus: velocity is not constant Distance $\approx (20 \text{ ft/sec})(15 \text{ seconds}) = 300 \text{ feet}$
- 6. Precalculus: Area = $\pi(\sqrt{2})^2$ = 2π

4. Precalculus: rate of change = slope = 0.08

8. Precalculus: Volume = $\pi(3)^2 6 = 54\pi$

10. (a) Area $\approx 5 + \frac{5}{2} + \frac{5}{3} + \frac{5}{4} \approx 10.417$ Area $\approx \frac{1}{2} \left(5 + \frac{5}{1.5} + \frac{5}{2} + \frac{5}{2.5} + \frac{5}{3} + \frac{5}{3.5} + \frac{5}{4} + \frac{5}{4.5} \right) \approx 9.145$

(b) You could improve the approximation by using more rectangles.

Section 1.2 Finding Limits Graphically and Numerically

2.	x	1.9	1.99 1.999		2.001	2.01	2.1	
	f(x)	0.2564	0.2506	0.2501	0.2499	0.2494	0.2439	

$$\lim_{x \to 2} \frac{x-2}{x^2-4} \approx 0.25 \quad \text{(Actual limit is } \frac{1}{4}.\text{)}$$

4.	x	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9
	f(x)	-0.2485	-0.2498	-0.2500	-0.2500	-0.2502	-0.2516

$$\lim_{x \to -3} \frac{\sqrt{1-x}-2}{x+3} \approx -0.25 \quad \text{(Actual limit is } -\frac{1}{4}.\text{)}$$

$$\lim_{x \to 4} \frac{[x/(x+1)] - (4/5)}{x-4} \approx 0.04 \quad \text{(Actual limit is } \frac{1}{25}\text{.)}$$

8.	x	-0.1	-0.01	-0.001	0.001	0.01	0.1
	f(x)	0.0500	0.0050	0.0005	-0.0005	-0.0050	-0.0500

$$\lim_{x \to 0} \frac{\cos x - 1}{x} \approx 0.0000 \quad \text{(Actual limit is 0.) (Make sure you use radian mode.)}$$

10.
$$\lim_{x \to 1} (x^2 + 2) = 3$$

12.
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (x^2 + 2) =$$

14. $\lim_{x \to 3} \frac{1}{x - 3}$ does not exist since the function increases and decreases without bound as *x* approaches 3.

16. $\lim_{x \to 0} \sec x = 1$

18.
$$\lim_{x \to 1} \sin(\pi x) = 0$$

3

20.
$$C(t) = 0.35 - 0.12[[-(t-1)]]$$

(b)	t	3	3.3	3.4	3.5	3.6	3.7	4
	C(t)	0.59	0.71	0.71	0.71	0.71	0.71	0.71

 $\lim_{t \to 3.5} C(t) = 0.71$

(c)	t	3	2.5	2.9	3	3.1	3.5	4
	C(t)	0.47	0.59	0.59	0.59	0.71	0.71	0.71

 $\lim_{t\to 3.5} C(t)$ does not exist. The values of C jump from 0.59 to 0.71 at t = 3.

22. You need to find δ such that $0 < |x - 2| < \delta$ implies $|f(x) - 3| = |x^2 - 1 - 3| = |x^2 - 4| < 0.2$. That is,

$$\begin{array}{rrrr} -0.2 < x^2 - 4 < 0.2 \\ 4 - 0.2 < x^2 < 4 + 0.2 \\ 3.8 < x^2 < 4.2 \\ \sqrt{3.8} < x < \sqrt{4.2} \\ \sqrt{3.8} - 2 < x - 2 < \sqrt{4.2} - 2 \end{array}$$

So take $\delta = \sqrt{4.2} - 2 \approx 0.0494$.

Then $0 < |x - 2| < \delta$ implies

$$-(\sqrt{4.2} - 2) < x - 2 < \sqrt{4.2} - 2$$
$$\sqrt{3.8} - 2 < x - 2 < \sqrt{4.2} - 2.$$

Using the first series of equivalent inequalities, you obtain

$$|f(x) - 3| = |x^2 - 4| < \epsilon = 0.2.$$

24.
$$\lim_{x \to 4} \left(4 - \frac{x}{2}\right) = 2$$
$$\left| \left(4 - \frac{x}{2}\right) - 2 \right| < 0.01$$
$$\left| 2 - \frac{x}{2} \right| < 0.01$$
$$\left| -\frac{1}{2}(x - 4) \right| < 0.01$$
$$0 < |x - 4| < 0.02 = \delta$$

Hence, if $0 < |x - 4| < \delta = 0.02$, you have

$$\left| -\frac{1}{2}(x-4) \right| < 0.01$$
$$\left| 2 - \frac{x}{2} \right| < 0.01$$
$$\left| \left(4 - \frac{x}{2} \right) - 2 \right| < 0.01$$
$$\left| f(x) - L \right| < 0.01$$

26. $\lim_{x \to 5} (x^2 + 4) = 29$ $|(x^2 + 4) - 29| < 0.01$ $|x^2 - 25| < 0.01$ |(x+5)(x-5)| < 0.01 $|x-5| < \frac{0.01}{|x+5|}$ If we assume 4 < x < 6, then $\delta = 0.01/11 \approx 0.0009$. Hence, if $0 < |x - 5| < \delta = \frac{0.01}{11}$, you have $|x-5| < \frac{0.01}{11} < \frac{1}{|x+5|}(0.01)$ |x-5||x+5| < 0.01 $|x^2 - 25| < 0.01$ $|(x^2 + 4) - 29| < 0.01$ |f(x) - L| < 0.01**30.** $\lim_{x \to 1} \left(\frac{2}{3}x + 9\right) = \frac{2}{3}(1) + 9 = \frac{29}{3}$ Given $\epsilon > 0$: $\left|\left(\frac{2}{3}x+9\right)-\frac{29}{3}\right| < \epsilon$ $\left|\frac{2}{3}x-\frac{2}{3}\right| < \epsilon$ $\frac{2}{3}|x-1| < \epsilon$ $|x-1| < \frac{3}{2}\epsilon$ Hence, let $\delta = (3/2)\epsilon$. Hence, if $0 < |x - 1| < \delta = \frac{3}{2}\epsilon$, you have $|x-1| < \frac{3}{2}\epsilon$ $\left|\frac{2}{3}x-\frac{2}{3}\right|<\epsilon$ $\left| \left(\frac{2}{3}x + 9 \right) - \frac{29}{3} \right| < \epsilon$ $|f(x) - L| < \epsilon$ **34.** $\lim_{x \to 4} \sqrt{x} = \sqrt{4} = 2$ $\left|\sqrt{x}-2\right| < \epsilon$ Given $\epsilon > 0$: $\left|\sqrt{x}-2\right|\left|\sqrt{x}+2\right| < \epsilon \left|\sqrt{x}+2\right|$ $|x-4| < \epsilon |\sqrt{x}+2|$ Assuming 1 < x < 9, you can choose $\delta = 3\epsilon$. Then, $0 < |x-4| < \delta = 3\epsilon \implies |x-4| < \epsilon |\sqrt{x+2}$ $\Rightarrow \left| \sqrt{x} - 2 \right| < \epsilon.$

28.
$$\lim_{x \to -3} (2x + 5) = -1$$

Given $\epsilon > 0$:

$$|(2x + 5) - (-1)| < \epsilon$$

$$|2x + 6| < \epsilon$$

$$|2x + 3| < \epsilon$$

$$|x + 3| < \frac{\epsilon}{2} = \delta$$

Hence, let $\delta = \epsilon/2$.
Hence, if $0 < |x + 3| < \delta = \frac{\epsilon}{2}$, you have

$$|x + 3| < \frac{\epsilon}{2}$$

$$|2x + 6| < \epsilon$$

$$|(2x + 5) - (-1)| < \epsilon$$

$$|f(x) - L| < \epsilon$$

32.
$$\lim_{x \to 2} (-1) = -1$$

Given $\epsilon > 0$: $|-1 - (-1)| < \epsilon$

$$0 < \epsilon$$

Hence, any $\delta > 0$ will work.
Hence, for any $\delta > 0$, you have

$$|(-1) - (-1)| < \epsilon$$

$$|f(x) - L| < \epsilon$$

36.
$$\lim_{x \to 3} |x - 3| = 0$$

Given $\epsilon > 0$:

$$|(x - 3) - 0| < \epsilon$$

$$|x - 3| < \epsilon = \delta$$

Hence, let $\delta = \epsilon$.
Hence for $0 < |x - 3| < \delta = \epsilon$, you have

$$|x - 3| < \epsilon$$

$$||x - 3| - 0| < \epsilon$$

$$|f(x) - L| < \epsilon$$

38. $\lim_{x \to -3} (x^2 + 3x) = 0$ Given $\epsilon > 0$: $|(x^2 + 3x) - 0| < \epsilon$ $|x(x + 3)| < \epsilon$ $|x + 3| < \frac{\epsilon}{|x|}$ If we assume -4 < x < -2, then $\delta = \epsilon/4$. Hence for $0 < |x - (-3)| < \delta = \frac{\epsilon}{4}$, you have $|x + 3| < \frac{1}{4}\epsilon < \frac{1}{|x|}\epsilon$ $|x(x + 3)| < \epsilon$

$$|x^2 + 3x - 0| < \epsilon$$
$$|f(x) - L| < \epsilon$$

The domain is all $x \neq \pm 3$. The graphing utility does not show the hole at $(3, \frac{1}{6})$.

46. Let p(x) be the atmospheric pressure in a plane at altitude x (in feet).

$$\lim_{x \to 0^+} p(x) = 14.7 \text{ lb/in}^2$$

The domain is all $x \neq 1, 3$. The graphing utility does not show the hole at $(3, \frac{1}{2})$.

- **44.** (a) No. The fact that f(2) = 4 has no bearing on the existence of the limit of f(x) as x approaches 2.
 - (b) No. The fact that $\lim_{x\to 2} f(x) = 4$ has no bearing on the value of f at 2.

Using the zoom and trace feature, $\delta = 0.001$. That is, for

$$0 < |x - 2| < 0.001, \left| \frac{x^2 - 4}{x - 2} - 4 \right| < 0.001.$$

52. False; let

$$f(x) = \begin{cases} x^2 - 4x, & x \neq 4\\ 10, & x = 4 \end{cases}$$

$$\lim_{x \to 4} f(x) = \lim_{x \to 4} (x^2 - 4x) = 0 \text{ and } f(4) = 10 \neq 0$$

54. $\lim_{x \to 4} \frac{x^2 - x - 12}{x - 4} = 7$

56. $f(x) = mx + b, m \neq 0$. Let $\epsilon > 0$ be given. Take $\delta = \frac{\epsilon}{|m|}$

If
$$0 < |x - c| < \delta = \frac{\epsilon}{|m|}$$
, then
 $|m||x - c| < \epsilon$
 $|mx - mc| < \epsilon$
 $|(mx + b) - (mc + b)| < \epsilon$
which shows that $\lim_{x \to c} (mx + b) = mc + b$.

58. $\lim_{x \to 0} g(x) = L, L > 0$. Let $\epsilon = \frac{1}{2}L$. There exists $\delta > 0$ such that $0 < |x - 0| < \delta$ implies $|g(x) - L| < \epsilon = \frac{1}{2}L$. That is,

$$-\frac{1}{2}L < g(x) - L < \frac{1}{2}L$$
$$\frac{1}{2}L < g(x) < \frac{3}{2}L$$

Hence for x in the interval $(c - \delta, c + \delta), x \neq c$, $g(x) > \frac{1}{2}L > 0.$

Section 1.3 **Evaluating Limits Analytically**

36. $\lim_{x \to 7} \sec\left(\frac{\pi x}{6}\right) = \sec\frac{7\pi}{6} = \frac{-2\sqrt{3}}{3}$

38. (a)
$$\lim_{x \to c} [4f(x)] = 4 \lim_{x \to c} f(x) = 4\left(\frac{3}{2}\right) = 6$$

(b)
$$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = \frac{3}{2} + \frac{1}{2} = 2$$

(c)
$$\lim_{x \to c} [f(x)g(x)] = [\lim_{x \to c} f(x)][\lim_{x \to c} g(x)] = \left(\frac{3}{2}\right)\left(\frac{1}{2}\right) = \frac{3}{4}$$

(d)
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{3/2}{1/2} = 3$$

42.
$$f(x) = x - 3$$
 and $h(x) = \frac{x^2 - 3x}{x}$ agree except at $x = 0$.
(a) $\lim_{x \to -2} h(x) = \lim_{x \to -2} f(x) = -5$
(b) $\lim_{x \to 0} h(x) = \lim_{x \to 0} f(x) = -3$

46.
$$f(x) = \frac{2x^2 - x - 3}{x + 1}$$
 and $g(x) = 2x - 3$ agree except at $x = -1$.
$$\lim_{x \to -1} f(x) = \lim_{x \to -1} g(x) = -5$$

40. (a)
$$\lim_{x \to c} \sqrt[3]{f(x)} = \sqrt[3]{\lim_{x \to c} f(x)} = \sqrt[3]{27} = 3$$

(b)
$$\lim_{x \to c} \frac{f(x)}{18} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} 18} = \frac{27}{18} = \frac{3}{2}$$

(c)
$$\lim_{x \to c} [f(x)]^2 = [\lim_{x \to c} f(x)]^2 = (27)^2 = 729$$

(d)
$$\lim_{x \to c} [f(x)]^{2/3} = [\lim_{x \to c} f(x)]^{2/3} = (27)^{2/3} = 9$$

44.
$$g(x) = \frac{1}{x-1}$$
 and $f(x) = \frac{x}{x^2 - x}$ agree except at $x = 0$.
(a) $\lim_{x \to 1} f(x)$ does not exist.
(b) $\lim_{x \to 0} f(x) = -1$

48.
$$f(x) = \frac{x^3 + 1}{x + 1}$$
 and $g(x) = x^2 - x + 1$ agree except at $x = -1$.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} g(x) = 3$$

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} g(x) = 3$$

50.
$$\lim_{x \to 2} \frac{2-x}{x^2-4} = \lim_{x \to 2} \frac{-(x-2)}{(x-2)(x+2)}$$

52.
$$\lim_{x \to 4} \frac{x^2 - 5x + 4}{x^2 - 2x - 8} = \lim_{x \to 4} \frac{(x-4)(x-1)}{(x-4)(x+2)}$$

$$= \lim_{x \to 4} \frac{(x-1)}{(x+2)} = \frac{3}{6} = \frac{1}{2}$$

54.
$$\lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{x} = \lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{x} \cdot \frac{\sqrt{2+x} + \sqrt{2}}{\sqrt{2+x} + \sqrt{2}}$$
$$= \lim_{x \to 0} \frac{2+x-2}{(\sqrt{2+x} + \sqrt{2})x} = \lim_{x \to 0} \frac{1}{\sqrt{2+x} + \sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$$

$$56. \lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3} = \lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3} \cdot \frac{\sqrt{x+1}+2}{\sqrt{x+1}+2} = \lim_{x \to 3} \frac{x-3}{(x-3)\left[\sqrt{x+1}+2\right]} = \lim_{x \to 3} \frac{1}{\sqrt{x+1}+2} = \frac{1}{4}$$

58.
$$\lim_{x \to 0} \frac{\frac{1}{x+4} - \frac{1}{4}}{x} = \lim_{x \to 0} \frac{\frac{4 - (x+4)}{4(x+4)}}{x} = \lim_{x \to 0} \frac{-1}{4(x+4)} = -\frac{1}{16}$$

60.
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x (2x + \Delta x)}{\Delta x} = \lim_{\Delta x \to 0} (2x + \Delta x) = 2x$$

$$62. \lim_{\Delta x \to 0} \frac{(x + \Delta x)^3 - x^3}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{\Delta x (3x^2 + 3x\Delta x + (\Delta x)^2)}{\Delta x} = \lim_{\Delta x \to 0} (3x^2 + 3x\Delta x + (\Delta x)^2) = 3x^2$$

64. $f(x) = \frac{4 - \sqrt{x}}{x - 16}$

x	15.9	15.99	15.999	16	16.001	16.01	16.1
f(x)	1252	125	125	?	125	125	1248

Analytically, $\lim_{x \to 16} \frac{4 - \sqrt{x}}{x - 16} = \lim_{x \to 16} \frac{(4 - \sqrt{x})}{(\sqrt{x} + 4)(\sqrt{x} - 4)}$ $= \lim_{x \to 16} \frac{-1}{\sqrt{x} + 4} = -\frac{1}{8}.$

It appears that the limit is -0.125.

66.
$$\lim_{x \to 2} \frac{x^5 - 32}{x - 2} = 80$$

x	1.9	1.99	1.999	1.9999	2.0	2.0001	2.001	2.01	2.1
f(x)	72.39	79.20	79.92	79.99	?	80.01	80.08	80.80	88.41

Analytically, $\lim_{x \to 2} \frac{x^5 - 32}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x^4 + 2x^3 + 4x^2 + 8x + 16)}{x - 2}$

$$= \lim_{x \to 2} \left(x^4 + 2x^3 + 4x^2 + 8x + 16 \right) = 80.$$

(*Hint*: Use long division to factor $x^5 - 32$.)

$$68. \lim_{x \to 0} \frac{3(1 - \cos x)}{x} = \lim_{x \to 0} \left[3\left(\frac{1 - \cos x}{x}\right) \right] = (3)(0) = 0$$

$$70. \lim_{\theta \to 0} \frac{\cos \theta \tan \theta}{\theta} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

$$72. \lim_{x \to 0} \frac{\tan^2 x}{x} = \lim_{x \to 0} \frac{\sin^2 x}{x \cos^2 x} = \lim_{x \to 0} \left[\frac{\sin x}{x} \cdot \frac{\sin x}{\cos^2 x} \right]$$

$$74. \lim_{\phi \to \pi} \phi \sec \phi = \pi(-1) = -\pi$$

$$= (1)(0) = 0$$

76.
$$\lim_{x \to \pi/4} \frac{1 - \tan x}{\sin x - \cos x} = \lim_{x \to \pi/4} \frac{\cos x - \sin x}{\sin x \cos x - \cos^2 x}$$
$$= \lim_{x \to \pi/4} \frac{-(\sin x - \cos x)}{\cos x(\sin x - \cos x)}$$
$$= \lim_{x \to \pi/4} \frac{-1}{\cos x}$$
$$= \lim_{x \to \pi/4} (-\sec x)$$
$$= -\sqrt{2}$$

78. $\lim_{x \to 0} \frac{\sin 2x}{\sin 3x} = \lim_{x \to 0} \left[2 \left(\frac{\sin 2x}{2x} \right) \left(\frac{1}{3} \right) \left(\frac{3x}{\sin 3x} \right) = 2(1) \left(\frac{1}{3} \right) (1) = \frac{2}{3}$

80. $f(h) = (1 + \cos 2h)$

h	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(h)	1.98	1.9998	2	?	2	1.9998	1.98

Analytically, $\lim_{h \to 0} (1 + \cos 2h) = 1 + \cos(0) = 1 + 1 = 2.$

82.
$$f(x) = \frac{\sin x}{\sqrt[3]{x}}$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)	0.215	0.0464	0.01	?	0.01	0.0464	0.215

Analytically, $\lim_{x \to 0} \frac{\sin x}{\sqrt[3]{x}} = \lim_{x \to 0} \sqrt[3]{x^2} \left(\frac{\sin x}{x} \right) = (0)(1) = 0.$

The limit appear to equal 2.

The limit appear to equal 0.

84.
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$
$$= \lim_{h \to 0} \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

86.
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - 4(x+h) - (x^2 - 4x)}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 4x - 4h - x^2 + 4x}{h}$$
$$= \lim_{h \to 0} \frac{h(2x+h-4)}{h} = \lim_{h \to 0} (2x+h-4) = 2x - 4$$

88.
$$\lim_{x \to a} [b - |x - a|] \le \lim_{x \to a} f(x) \le \lim_{x \to a} [b + |x - a|]$$
$$b \le \lim_{x \to a} f(x) \le b$$
Therefore,
$$\lim_{x \to a} f(x) = b.$$

90. $f(x) = |x \sin x|$

 $\lim_{x \to 0} |x \sin x| = 0$

 $\lim_{x \to 0} |x| \cos x = 0$

 $\lim_{x \to 0} \left(x \cos \frac{1}{x} \right) = 0$

- 96. $f(x) = \frac{x^2 1}{x 1}$ and g(x) = x + 1 agree at all points except x = 1.
- **98.** If a function *f* is squeezed between two functions *h* and *g*, $h(x) \le f(x) \le g(x)$, and *h* and *g* have the same limit *L* as $x \rightarrow c$, then $\lim_{x \to 0} f(x)$ exists and equals *L*.

100.
$$f(x) = x$$
, $g(x) = \sin^2 x$, $h(x) = \frac{\sin^2 x}{x}$

When you are "close to" 0 the magnitude of g is "smaller" than the magnitude of f and the magnitude of g is approaching zero "faster" than the magnitude of f. Thus, $|g|/|f| \approx 0$ when x is "close to" 0

102.
$$s(t) = -16t^2 + 1000 = 0$$
 when $t = \sqrt{\frac{1000}{16}} = \frac{5\sqrt{10}}{2}$ seconds

$$\lim_{t \to 5\sqrt{10}/2} \frac{s\left(\frac{5\sqrt{10}}{2}\right) - s(t)}{\frac{5\sqrt{10}}{2} - t} = \lim_{t \to 5\sqrt{10}/2} \frac{0 - (-16t^2 + 1000)}{\frac{5\sqrt{10}}{2} - t}$$
$$= \lim_{t \to 5\sqrt{10}/2} \frac{16\left(t^2 - \frac{125}{2}\right)}{\frac{5\sqrt{10}}{2} - t} = \lim_{t \to 5\sqrt{10}/2} \frac{16\left(t + \frac{5\sqrt{10}}{2}\right)\left(t - \frac{5\sqrt{10}}{2}\right)}{-\left(t - \frac{5\sqrt{10}}{2}\right)}$$
$$= \lim_{t \to 5\sqrt{10}/2} - 16\left(t + \frac{5\sqrt{10}}{2}\right) = -80\sqrt{10} \text{ ft/sec} \approx -253 \text{ ft/sec}$$

104.
$$-4.9t^2 + 150 = 0$$
 when $t = \sqrt{\frac{150}{4.9}} = \sqrt{\frac{1500}{49}} \approx 5.53$ seconds.

The velocity at time t = a is

$$\lim_{t \to a} \frac{s(a) - s(t)}{a - t} = \lim_{t \to a} \frac{(-4.9a^2 + 150) - (-4.9t^2 + 150)}{a - t} = \lim_{t \to a} \frac{-4.9(a - t)(a + t)}{a - t}$$
$$= \lim_{t \to a} -4.9(a + t) = -2a(4.9) = -9.8a \text{ m/sec.}$$

Hence, if $a = \sqrt{1500/49}$, the velocity is $-9.8\sqrt{1500/49} \approx -54.2$ m/sec.

- **106.** Suppose, on the contrary, that $\lim_{x\to c} g(x)$ exists. Then, since $\lim_{x\to c} f(x)$ exists, so would $\lim_{x\to c} [f(x) + g(x)]$, which is a contradiction. Hence, $\lim_{x\to c} g(x)$ does not exist.
- **108.** Given $f(x) = x^n$, *n* is a positive integer, then

$$\lim_{x \to c} x^{n} = \lim_{x \to c} (xx^{n-1}) = \left[\lim_{x \to c} x\right] \left[\lim_{x \to c} x^{n-1}\right]$$
$$= c \left[\lim_{x \to c} (xx^{n-2})\right] = c \left[\lim_{x \to c} x\right] \left[\lim_{x \to c} x^{n-2}\right]$$
$$= c (c) \lim_{x \to c} (xx^{n-3}) = \cdots = c^{n}.$$

110. Given $\lim_{x \to \infty} f(x) = 0$:

For every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - 0| < \epsilon$ whenever $0 < |x - c| < \delta$. Now $|f(x) - 0| = |f(x)| = ||f(x)| - 0| < \epsilon$ for $|x - c| < \delta$. Therefore, $\lim_{x \to c} |f(x)| = 0$.

112. (a) If
$$\lim_{x \to c} |f(x)| = 0$$
, then $\lim_{x \to c} [-|f(x)|] = 0$.
 $-|f(x)| \le f(x) \le |f(x)|$
 $\lim_{x \to c} [-|f(x)|] \le \lim_{x \to c} f(x) \le \lim_{x \to c} |f(x)|$
 $0 \le \lim_{x \to c} f(x) \le 0$
Therefore, $\lim_{x \to c} f(x) = 0$.
(b) Given $\lim_{x \to c} f(x) = L$:
For every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < |x - c| < \delta$.
Since $||f(x)| - |L|| \le |f(x) - L| < \epsilon$ for $|x - c| < \delta$, then $\lim_{x \to c} |f(x)| = |L|$.

114. True.
$$\lim_{x \to 0} x^3 = 0^3 = 0$$

116. False. Let
$$f(x) = \begin{cases} x & x \neq 1 \\ 3 & x = 1 \end{cases}$$
, $c = 1$
Then $\lim_{x \to 1} f(x) = 1$ but $f(1) \neq 1$.

118. False. Let $f(x) = \frac{1}{2}x^2$ and $g(x) = x^2$. Then f(x) < g(x) for all $x \neq 0$. But $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$.

$$120. \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x} \cdot \frac{1 + \cos x}{1 + \cos x}$$
$$= \lim_{x \to 0} \frac{1 - \cos^2 x}{x(1 + \cos x)} = \lim_{x \to 0} \frac{\sin^2 x}{x(1 + \cos x)}$$
$$= \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin x}{1 + \cos x}$$
$$= \left[\lim_{x \to 0} \frac{\sin x}{x}\right] \left[\lim_{x \to 0} \frac{\sin x}{1 + \cos x}\right]$$
$$= (1)(0) = 0$$

122.
$$f(x) = \frac{\sec x - 1}{x^2}$$

(a) The domain of f is all $x \neq 0$, $\pi/2 + n\pi$.

The domain is not obvious. The hole at x = 0 is not apparent.

(c)
$$\lim_{x \to 0} f(x) = \frac{1}{2}$$

(d) $\frac{\sec x - 1}{x^2} = \frac{\sec x - 1}{x^2} \cdot \frac{\sec x + 1}{\sec x + 1} = \frac{\sec^2 x - 1}{x^2(\sec x + 1)}$
 $= \frac{\tan^2 x}{x^2(\sec x + 1)} = \frac{1}{\cos^2 x} \left(\frac{\sin^2 x}{x^2}\right) \frac{1}{\sec x + 1}$
Hence, $\lim_{x \to 0} \frac{\sec x - 1}{x^2} = \lim_{x \to 0} \frac{1}{\cos^2 x} \left(\frac{\sin^2 x}{x^2}\right) \frac{1}{\sec x + 1}$
 $= 1(1) \left(\frac{1}{2}\right) = \frac{1}{2}.$

124. The calculator was set in degree mode, instead of radian mode.

Section 1.4 Continuity and One-Sided Limits

2. (a)
$$\lim_{x \to -2^+} f(x) = -2$$
4. (a) $\lim_{x \to -2^+} f(x) = 2$ **6.** (a) $\lim_{x \to -1^+} f(x) = 0$ (b) $\lim_{x \to -2^-} f(x) = -2$ (b) $\lim_{x \to -2^-} f(x) = 2$ (b) $\lim_{x \to -1^-} f(x) = 2$ (c) $\lim_{x \to -2} f(x) = -2$ (c) $\lim_{x \to -2} f(x) = 2$ (c) $\lim_{x \to -2} f(x) = 2$ The function is continuous at
 $x = -2$.The function is NOT continuous at
 $x = -1$.The function is NOT continuous at
 $x = -1$.

8.
$$\lim_{x \to 2^+} \frac{2 - x}{x^2 - 4} = \lim_{x \to 2^+} -\frac{1}{x + 2} = -\frac{1}{4}$$
10.
$$\lim_{x \to 4^-} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4^-} \frac{\sqrt{x} - 2}{x - 4} \cdot \frac{\sqrt{x} + 2}{\sqrt{x} + 2}$$

$$= \lim_{x \to 4^-} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)}$$

$$= \lim_{x \to 4^-} \frac{1}{\sqrt{x} + 2} = \frac{1}{4}$$

12.
$$\lim_{x \to 2^+} \frac{|x-2|}{x-2} = \lim_{x \to 2^+} \frac{x-2}{x-2} = 1$$

14.
$$\lim_{\Delta x \to 0^+} \frac{(x + \Delta x)^2 + (x + \Delta x) - (x^2 + x)}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{x^2 + 2x(\Delta x) + (\Delta x)^2 + x + \Delta x - x^2 - x}{\Delta x}$$
$$= \lim_{\Delta x \to 0^+} \frac{2x(\Delta x) + (\Delta x)^2 + \Delta x}{\Delta x}$$
$$= \lim_{\Delta x \to 0^+} (2x + \Delta x + 1)$$
$$= 2x + 0 + 1 = 2x + 1$$

16.
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (-x^2 + 4x - 2) = 2$$

$$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (x^2 - 4x + 6) = 2$$

$$\lim_{x \to 2} f(x) = 2$$

18.
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (1 - x) = 0$$

20. $\lim_{x \to \pi/2} \sec x \text{ does not exist since}$ $\lim_{x \to (\pi/2)^+} \sec x \text{ and } \lim_{x \to (\pi/2)^-} \sec x \text{ do not exist.}$ **22.** $\lim_{x \to 2^+} (2x)$

22.
$$\lim_{x \to 2^+} (2x - [[x]]) = 2(2) - 2 = 2$$

24. $\lim_{x \to 1} \left(1 - \left[\left[-\frac{x}{2} \right] \right] \right) = 1 - (-1) = 2$ **26.**

$$26. f(x) = \frac{x^2 - 1}{x + 1}$$

has a discontinuity at x = -1 since f(-1) is not defined.

28.
$$f(x) = \begin{cases} x, & x < 1 \\ 2, & x = 1 \\ 2x - 1, & x > 1 \end{cases}$$
 has discontinuity at $x = 1$ since $f(1) = 2 \neq \lim_{x \to 1} f(x) = 1$.

30. $f(t) = 3 - \sqrt{9 - t^2}$ is continuous on [-3, 3]. **32.** g(2) is not defined. g is continuous on [-1, 2).

34.
$$f(x) = \frac{1}{x^2 + 1}$$
 is continuous for all real *x*.
36. $f(x) = \cos \frac{\pi x}{2}$ is continuous for all real *x*.

38. $f(x) = \frac{x}{x^2 - 1}$ has nonremovable discontinuities at x = 1 and x = -1 since $\lim_{x \to 1} f(x)$ and $\lim_{x \to -1} f(x)$ do not exist.

40. $f(x) = \frac{x-3}{x^2-9}$ has a nonremovable discontinuity at x = -3 since $\lim_{x \to -3} f(x)$ does not exist, and has a removable discontinuity at x = 3 since

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{1}{x+3} = \frac{1}{6}.$$

42.
$$f(x) = \frac{x-1}{(x+2)(x-1)}$$

has a nonremovable discontinuity at x = -2 since $\lim_{x \to -2} f(x)$ does not exist, and has a removable discontinuity at x = 1 since

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{1}{x+2} = \frac{1}{3}.$$

46. $f(x) = \begin{cases} -2x + 3, & x < 1 \\ x^2, & x \ge 1 \end{cases}$

has a **possible** discontinuity at x = 1.

1.
$$f(1) = 1^2 = 1$$

2. $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (-2x + 3) = 1$
 $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} x^2 = 1$
3. $f(1) = \lim_{x \to 1} f(x)$

f is continuous at x = 1, therefore, *f* is continuous for all real *x*.

- **48.** $f(x) = \begin{cases} -2x, & x \le 2\\ x^2 4x + 1, & x > 2 \end{cases}$ has a **possible** discontinuity at x = 2. **1.** f(2) = -2(2) = -4
 - 2. $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (-2x) = -4$ $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x^{2} 4x + 1) = -3$ $\lim_{x \to 2^{+}} f(x) = -3$ Therefore, *f* has a nonremovable discontinuity at *x* = 2.

50.
$$f(x) = \begin{cases} \csc \frac{\pi x}{6}, & |x-3| \le 2\\ 2, & |x-3| > 2 \end{cases} \begin{cases} \csc \frac{\pi x}{6}, & 1 \le x \le 5\\ 2, & x < 1 \text{ or } x > 5 \end{cases}$$
 has **possible** discontinuities at $x = 1, x = 5$.
1.
$$f(1) = \csc \frac{\pi}{6} = 2 \qquad f(5) = \csc \frac{5\pi}{6} = 2$$

2.
$$\lim_{x \to 1} f(x) = 2 \qquad \lim_{x \to 5} f(x) = 2$$

3.
$$f(1) = \lim_{x \to 1} f(x) \qquad f(5) = \lim_{x \to 5} f(x)$$

f is continuous at x = 1 and x = 5, therefore, f is continuous for all real x.

44.
$$f(x) = \frac{|x-3|}{x-3}$$

has a nonremovable discontinuity at x = 3 since $\lim_{x\to 3} f(x)$ does not exist.

52. $f(x) = \tan \frac{\pi x}{2}$ has nonremovable discontinuities at each 2k + 1, k is an integer.

60. $\lim_{x \to a} g(x) = \lim_{x \to a} \frac{x^2 - a^2}{x - a}$ $= \lim_{x \to a} (x + a) = 2a$

Find a such that $2a = 8 \implies a = 4$.

62.
$$f(g(x)) = \frac{1}{\sqrt{x-1}}$$

Nonremovable discontinuity at x = 1. Continuous for all x > 1. Because $f \circ g$ is not defined for x < 1, it is better to say that $f \circ g$ is discontinuous from the right at x = 1.

64. $f(g(x)) = \sin x^2$

Continuous for all real x

66.
$$h(x) = \frac{1}{(x+1)(x-2)}$$

Nonremovable discontinuity at x = -1 and x = 2.

Therefore, $\lim_{x\to 0} f(x) = 0 = f(0)$ and f is continuous on the entire real line. (x = 0 was the only possible discontinuity.)

70.
$$f(x) = x\sqrt{x+3}$$

Continuous on $[-3, \infty]$
72. $f(x) = \frac{x+1}{\sqrt{x}}$
Continuous on $(0, \infty)$

54. f(x) = 3 - [[x]] has nonremovable discontinuities at each integer *k*.

58.
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} \frac{4 \sin x}{x} = 4$$
$$\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} (a - 2x) = a$$
Let $a = 4$.

4

74.
$$f(x) = \frac{x^3 - 8}{x - 2}$$

The graph **appears** to be continuous on the interval [-4, 4]. Since f(2) is not defined, we know that f has a discontinuity at x = 2. This discontinuity is removable so it does not show up on the graph.

78.
$$f(x) = \frac{-4}{x} + \tan \frac{\pi x}{8}$$
 is continuous on [1, 3].
 $f(1) = -4 + \tan \frac{\pi}{8} < 0$ and $f(3) = -\frac{4}{3} + \tan \frac{3\pi}{8} > 0$

By the Intermediate Value Theorem, f(1) = 0 for at least one value of *c* between 1 and 3.

82. $h(\theta) = 1 + \theta - 3 \tan \theta$

h is continuous on [0, 1].

h(0) = 1 > 0 and $h(1) \approx -2.67 < 0$.

By the Intermediate Value Theorem, $h(\theta) = 0$ for at least one value θ between 0 and 1. Using a graphing utility, we find that $\theta \approx 0.4503$.

86.
$$f(x) = \frac{x^2 + x}{x - 1}$$

f is continuous on $\begin{bmatrix} 5\\2\\, 4 \end{bmatrix}$. The nonremovable discontinuity, x = 1, lies outside the interval.

$$f\left(\frac{5}{2}\right) = \frac{35}{6} \text{ and } f(4) = \frac{20}{3}$$

 $\frac{35}{6} < 6 < \frac{20}{3}$

76. $f(x) = x^3 + 3x - 2$ is continuous on [0, 1].

$$f(0) = -2$$
 and $f(1) = 2$

By the Intermediate Value Theorem, f(x) = 0 for at least one value of *c* between 0 and 1.

80. $f(x) = x^3 + 3x - 2$

f(x) is continuous on [0, 1].

$$f(0) = -2$$
 and $f(1) = 2$

By the Intermediate Value Theorem, f(x) = 0 for at least one value of *c* between 0 and 1. Using a graphing utility, we find that $x \approx 0.5961$.

84.
$$f(x) = x^2 - 6x + 8$$

f is continuous on [0, 3]. f(0) = 8 and f(3) = -1

$$-1 < 0 < 8$$

The Intermediate Value Theorem applies.

$$x^{2} - 6x + 8 = 0$$

(x - 2)(x - 4) = 0
x = 2 or x = 4

c = 2 (x = 4 is not in the interval.)

Thus, f(2) = 0.

The Intermediate Value Theorem applies.

$$\frac{x^2 + x}{x - 1} = 6$$

$$x^2 + x = 6x - 6$$

$$x^2 - 5x + 6 = 0$$

$$(x - 2)(x - 3) = 0$$

$$x = 2 \text{ or } x = 3$$

$$c = 3 (x = 2 \text{ is not in the interval.})$$
Thus, $f(3) = 6$.

88. A discontinuity at x = c is removable if you can define (or redefine) the function at x = c in such a way that the new function is continuous at x = c. Answers will vary.

(a)
$$f(x) = \frac{|x-2|}{x-2}$$

(b) $f(x) = \frac{\sin(x+2)}{x+2}$

90. If *f* and *g* are continuous for all real *x*, then so is f + g (Theorem 1.11, part 2). However, f/g might not be continuous if g(x) = 0. For example, let f(x) = x and $g(x) = x^2 - 1$. Then *f* and *g* are continuous for all real *x*, but f/g is not continuous at $x = \pm 1$.

(1.04,	$0 < t \leq 2$	You can also write C as	
92. $C = \begin{cases} 1.04 + 0.36[[t - 1]], \\ 1.04 + 0.36(t - 2), \end{cases}$	t > 2, t is not an integer t > 2, t is an integer	$C = \begin{cases} 1.04, \\ 1.04 - 0.36 \llbracket 2 - t \rrbracket, \end{cases}$	$\begin{array}{l} 0 < t \leq 2 \\ t > 2 \end{array}.$
Nonremovable discontinuity	at each integer greater than 2.	r	

94. Let s(t) be the position function for the run up to the campsite. s(0) = 0 (t = 0 corresponds to 8:00 A.M., s(20) = k (distance to campsite)). Let r(t) be the position function for the run back down the mountain: r(0) = k, r(10) = 0. Let f(t) = s(t) - r(t).

When t = 0 (8:00 A.M.), f(0) = s(0) - r(0) = 0 - k < 0.

When t = 10 (8:10 A.M.), f(10) = s(10) - r(10) > 0.

Since f(0) < 0 and f(10) > 0, then there must be a value *t* in the interval [0, 10] such that f(t) = 0. If f(t) = 0, then s(t) - r(t) = 0, which gives us s(t) = r(t). Therefore, at some time *t*, where $0 \le t \le 10$, the position functions for the run up and the run down are equal.

96. Suppose there exists x_1 in [a, b] such that $f(x_1) > 0$ and there exists x_2 in [a, b] such that $f(x_2) < 0$. Then by the Intermediate Value Theorem, f(x) must equal zero for some value of x in $[x_1, x_2]$ (or $[x_2, x_1]$ if $x_2 < x_1$). Thus, f would have a zero in [a, b], which is a contradiction. Therefore, f(x) > 0 for all x in [a, b] or f(x) < 0 for all x in [a, b].

98.	If $x = 0$, then $f(0) = 0$ and $\lim_{x \to 0} f(x) = 0$. Hence, f is	100.	True
	continuous at $x = 0$.		1. $f(c) = L$ is defined.
	If $x \neq 0$, then $\lim_{t \to x} f(t) = 0$ for x rational, whereas		2. $\lim f(x) = L$ exists.
	$\lim f(t) = \lim kt = kx \neq 0$ for x irrational. Hence, f is not		$x \rightarrow c$
	continuous for all $x \neq 0$.		3. $f(c) = \lim_{x \to c} f(x)$

All of the conditions for continuity are met.

102. False; a rational function can be written as P(x)/Q(x) where *P* and *Q* are polynomials of degree *m* and *n*, respectively. It can have, at most, *n* discontinuities.

- (b) There appears to be a limiting speed and a possible cause is air resistance.
- **106.** Let y be a real number. If y = 0, then x = 0. If y > 0, then let $0 < x_0 < \pi/2$ such that $M = \tan x_0 > y$ (this is possible since the tangent function increases without bound on $[0, \pi/2)$). By the Intermediate Value Theorem, $f(x) = \tan x$ is continuous on $[0, x_0]$ and 0 < y < M, which implies that there exists x between 0 and x_0 such that $\tan x = y$. The argument is similar if y < 0.
- **108. 1.** f(c) is defined.
 - 2. $\lim_{x \to c} f(x) = \lim_{\Delta x \to 0} f(c + \Delta x) = f(c) \text{ exists.}$ [Let $x = c + \Delta x$. As $x \to c$, $\Delta x \to 0$]

3.
$$\lim_{x \to c} f(x) = f(c).$$

Therefore, f is continuous at x = c.

110. Define $f(x) = f_2(x) - f_1(x)$. Since f_1 and f_2 are continuous on [a, b], so is f.

$$f(a) = f_2(a) - f_1(a) > 0$$
 and $f(b) = f_2(b) - f_1(b) < 0$.

By the Intermediate Value Theorem, there exists c in [a, b] such that f(c) = 0.

$$f(c) = f_2(c) - f_1(c) = 0 \implies f_1(c) = f_2(c)$$

Section 1.5 Infinite Limits

2.
$$\lim_{x \to -2^+} \frac{1}{x+2} = \infty$$

 $\lim_{x \to -2^-} \frac{1}{x+2} = -\infty$
4. $\lim_{x \to -2^+} \sec \frac{\pi x}{4} = \infty$
 $\lim_{x \to -2^-} \sec \frac{\pi x}{4} = -\infty$

6.
$$f(x) = \frac{x}{x^2 - 9}$$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
f(x)	-1.077	-5.082	-50.08	-500.1	499.9	49.92	4.915	0.9091

 $\lim_{x \to -3^{-}} f(x) = -\infty$ $\lim_{x \to -3^{+}} f(x) = \infty$

8. $f(x) = \sec \frac{\pi x}{6}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
f(x)	-3.864	-19.11	- 191.0	- 1910	1910	191.0	19.11	3.864

 $\lim_{x \to -3^{-}} f(x) = -\infty$ $\lim_{x \to -3^{+}} f(x) = \infty$

10. $\lim_{x \to 2^{+}} \frac{4}{(x-2)^{3}} = \infty$ $\lim_{x \to 2^{-}} \frac{4}{(x-2)^{3}} = -\infty$

Therefore, x = 2 is a vertical asymptote.

12.
$$\lim_{x \to 0^-} \frac{2+x}{x^2(1-x)} = \lim_{x \to 0^+} \frac{2+x}{x^2(1-x)} = \infty$$

Therefore, x = 0 is a vertical asymptote.

$$\lim_{x \to 1^{-}} \frac{2+x}{x^2(1-x)} = \infty$$
$$\lim_{x \to 1^{+}} \frac{2+x}{x^2(1-x)} = -\infty$$

Therefore, x = 1 is a vertical asymptote.

14. No vertical asymptote since the denominator is never zero.

16.
$$\lim_{s \to -5^-} h(s) = -\infty$$
 and $\lim_{s \to -5^+} h(s) = \infty$.
Therefore, $s = -5$ is a vertical asymptote.
 $\lim_{s \to 5^-} h(s) = -\infty$ and $\lim_{s \to 5^+} h(s) = \infty$.
Therefore, $s = 5$ is a vertical asymptote.

18.
$$f(x) = \sec \pi x = \frac{1}{\cos \pi x}$$
 has vertical asymptotes at $x = \frac{2n+1}{2}$, *n* any integer.

20.
$$g(x) = \frac{(1/2)x^3 - x^2 - 4x}{3x^2 - 6x - 24} = \frac{1}{6} \frac{x(x^2 - 2x - 8)}{x^2 - 2x - 8}$$

= $\frac{1}{6}x$,
 $x \neq -2, 4$

No vertical asymptotes. The graph has holes at x = -2 and x = 4.

22.
$$f(x) = \frac{4(x^2 + x - 6)}{x(x^3 - 2x^2 - 9x + 18)} = \frac{4(x + 3)(x - 2)}{x(x - 2)(x^2 - 9)} = \frac{4}{x(x - 3)}, x \neq -3, 2$$

Vertical asymptotes at x = 0 and x = 3. The graph has holes at x = -3 and x = 2.

24.
$$h(x) = \frac{x^2 - 4}{x^3 + 2x^2 + x + 2} = \frac{(x+2)(x-2)}{(x+2)(x^2+1)}$$

has no vertical asymptote since

26.
$$h(t) = \frac{t(t-2)}{(t-2)(t+2)(t^2+4)} = \frac{t}{(t+2)(t^2+4)}, t \neq 2$$

Vertical asymptote at t = -2. The graph has a hole at t = 2.

$$\lim_{x \to -2} h(x) = \lim_{x \to -2} \frac{x-2}{x^2+1} = -\frac{4}{5}.$$

28. $g(\theta) = \frac{\tan \theta}{\theta} = \frac{\sin \theta}{\theta \cos \theta}$ has vertical asymptotes at

$$\theta = \frac{(2n+1)\pi}{2} = \frac{\pi}{2} + n\pi$$
, *n* any integer

There is no vertical asymptote at $\theta = 0$ since

$$\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1.$$

32. $\lim_{x \to -1} \frac{\sin(x+1)}{x+1} = 1$ Removable discontinuity at x = -1

36.
$$\lim_{x \to 4^-} \frac{x^2}{x^2 + 16} = \frac{1}{2}$$

40. $\lim_{x \to 3} \frac{x-2}{x^2} = \frac{1}{9}$

- 44. $\lim_{x \to (\pi/2)^+} \frac{-2}{\cos x} = \infty$
- **48.** $\lim_{x \to (1/2)^{-}} x^2 \tan \pi x = \infty \text{ and } \lim_{x \to (1/2)^{+}} x^2 \tan \pi x = -\infty.$ Therefore, $\lim_{x \to (1/2)} x^2 \tan \pi x \text{ does not exist.}$

Removable discontinuity at x = -1

34.
$$\lim_{x \to 1^+} \frac{2+x}{1-x} = -\infty$$

38.
$$\lim_{x \to -(1/2)^+} \frac{6x^2 + x - 1}{4x^2 - 4x - 3} = \lim_{x \to -(1/2)^+} \frac{3x - 1}{2x - 3} = \frac{5}{8}$$

42.
$$\lim_{x \to 0^-} \left(x^2 - \frac{1}{x}\right) = \infty$$

46.
$$\lim_{x \to 0} \frac{(x+2)}{\cot x} = \lim_{x \to 0} \left[(x+2)\tan x \right] = 0$$

50.
$$f(x) = \frac{x^3 - 1}{x^2 + x + 1}$$

$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x - 1) = 0$$

54. The line x = c is a vertical asymptote if the graph of f approaches $\pm \infty$ as x approaches c.

52.
$$f(x) = \sec \frac{\pi x}{6}$$

$$\lim_{x \to 3^+} f(x) = -\infty$$

56. No. For example, $f(x) = \frac{1}{x^2 + 1}$ has no vertical asymptote.

58.
$$P = \frac{k}{V}$$

$$\lim_{V \to 0^+} \frac{k}{V} = k(\infty) = \infty$$
 (In this case we know that $k > 0$.)

60. (a)
$$r = 50\pi \sec^2 \frac{\pi}{6} = \frac{200\pi}{3}$$
 ft/sec
(b) $r = 50\pi \sec^2 \frac{\pi}{3} = 200\pi$ ft/sec
(c) $\lim_{\theta \to (\pi/2)^-} [50\pi \sec^2 \theta] = \infty$

64. (a) Average speed = $\frac{\text{Total distance}}{\text{Total time}}$ $50 = \frac{2d}{(d/x) + (d/y)}$ $50 = \frac{2xy}{y+x}$ 50y + 50x = 2xy50x = 2xy - 50y50x = 2y(x - 25) $\frac{25x}{x-25} = y$

Domain: x > 25

66. (a)
$$A = \frac{1}{2}bh - \frac{1}{2}r^2 \theta = \frac{1}{2}(10)(10 \tan \theta) - \frac{1}{2}(10)^2 \theta$$

= 50 tan θ - 50 θ
Domain: $\left(0, \frac{\pi}{2}\right)$
(c) $\int_{0}^{100} \int_{0}^{100} \int_{1.5}^{1.5} \theta$

62.
$$m = \frac{m_0}{\sqrt{1 - (v^2/c^2)}}$$

$$\lim_{v \to c^-} m = \lim_{v \to c^-} \frac{m_0}{\sqrt{1 - (v^2/c^2)}} = \infty$$

(b)	x	30	40	50	60			
	у	150	66.667	50	42.857			
(c) $\lim_{x \to 25^+} \frac{25x}{x - 25} = \infty$								

As *x* gets close to 25 mph, *y* becomes larger and larger.

(b)	ϕ	0.3	0.6	0.9	1.2	1.5
	$f(\theta)$	0.47	4.21	18.0	68.6	630.1

(d)
$$\lim_{\theta \to \pi/2^-} A = \infty$$

68. False; for instance, let

٥Ľ

$$f(x) = \frac{x^2 - 1}{x - 1}.$$

The graph of f has a hole at (1, 2), not a vertical asymptote.

72. Let
$$f(x) = \frac{1}{x^2}$$
 and $g(x) = \frac{1}{x^4}$, and $c = 0$.

$$\lim_{x \to 0} \frac{1}{x^2} = \infty \text{ and } \lim_{x \to 0} \frac{1}{x^4} = \infty, \text{ but}$$

$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{x^4}\right) = \lim_{x \to 0} \left(\frac{x^2 - 1}{x^4}\right) = -\infty \neq 0.$$

70. True

74. Given
$$\lim_{x \to c} f(x) = \infty$$
, let $g(x) = 1$. then $\lim_{x \to c} \frac{g(x)}{f(x)} = 0$
by Theorem 1.15.