CHAPTER 1 Limits and Their Properties

Problem Solv	ing
Review Exerc	ises
Section 1.5	Infinite Limits
Section 1.4	Continuity and One-Sided Limits
Section 1.3	Evaluating Limits Analytically
Section 1.2	Finding Limits Graphically and Numerically
Section 1.1	A Preview of Calculus

CHAPTER 1 Limits and Their Properties

Section 1.1 A Preview of Calculus

Solutions to Odd-Numbered Exercises

- **1.** Precalculus: (20 ft/sec)(15 seconds) = 300 feet
- **3.** Calculus required: slope of tangent line at x = 2 is rate of change, and equals about 0.16.
- **5.** Precalculus: Area $=\frac{1}{2}bh = \frac{1}{2}(5)(3) = \frac{15}{2}$ sq. units
- 7. Precalculus: Volume = (2)(4)(3) = 24 cubic units

- (b) The graphs of y_2 are approximations to the tangent line to y_1 at x = 1.
- (c) The slope is approximately 2. For a better approximation make the list numbers smaller: $\{0.2, 0.1, 0.01, 0.001\}$

11. (a)
$$D_1 = \sqrt{(5-1)^2 + (1-5)^2} = \sqrt{16+16} \approx 5.66$$

(b) $D_2 = \sqrt{1 + (\frac{5}{2})^2} + \sqrt{1 + (\frac{5}{2} - \frac{5}{3})^2} + \sqrt{1 + (\frac{5}{3} - \frac{5}{4})^2} + \sqrt{1 + (\frac{5}{4} - 1)^2}$
 $\approx 2.693 + 1.302 + 1.083 + 1.031 \approx 6.11$

(c) Increase the number of line segments.

Section 1.2 Finding Limits Graphically and Numerically

1.	x	1.9	1.99	1.999	2.001	2.01	2.1
	f(x)	0.3448	0.3344	0.3334	0.3332	0.3322	0.3226

$$\lim_{x \to 2} \frac{x-2}{x^2 - x - 2} \approx 0.3333 \quad (\text{Actual limit is } \frac{1}{3}.)$$

5.	x	2.9	2.99	2.999	3.001	3.01	3.1
	f(x)	-0.0641	-0.0627	-0.0625	-0.0625	-0.0623	-0.0610

$$\lim_{x \to 3} \frac{[1/(x+1)] - (1/4)}{x-3} \approx -0.0625 \quad \text{(Actual limit is } -\frac{1}{16}\text{.)}$$

7.	x	-0.1	-0.01	-0.001	0.001	0.01	0.1
	f(x)	0.9983	0.99998	1.0000	1.0000	0.99998	0.9983

 $\lim_{x \to 0} \frac{\sin x}{x} \approx 1.0000$ (Actual limit is 1.) (Make sure you use radian mode.)

9.
$$\lim_{x \to 3} (4 - x) = 1$$

11. $\lim_{x \to 2} f(x) = \lim_{x \to 2} (4 - x) = 2$

1.25

С

1.75

- 13. $\lim_{x\to 5} \frac{|x-5|}{x-5}$ does not exist. For values of x to the left of 5, |x-5|/(x-5) equals -1, whereas for values of x to the right of 5, |x - 5|/(x - 5) equals 1.
- 15. $\lim_{x \to -\frac{1}{2}} \tan x$ does not exist since the function increases and decreases without bound as x approaches $\pi/2$.
- 17. $\lim_{x \to \infty} \cos(1/x)$ does not exist since the function oscillates between -1 and 1 as x approaches 0.

19. C(t) = 0.75 - 0.50[[-(t-1)]]

(b)	t	3	3.3	3.4	3.5	3.6	3.7	4
	С	1.75	2.25	2.25	2.25	2.25	2.25	2.25
	$\lim_{t\to 3.5}$	C(t) =	2.25					
(c)	t	2	2.5	2.9	3	3.1	3.5	4

1.75

 $\lim_{t\to 3} C(t) \text{ does not exist. The values of } C \text{ jump from } 1.75 \text{ to } 2.25 \text{ at } t = 3.$

2.25

2.25

2.25

1.75

21. You need to find δ such that $0 < |x - 1| < \delta$ implies $|f(x) - 1| = \left|\frac{1}{x} - 1\right| < 0.1$. That is, $-0.1 < \frac{1}{x} - 1 < 0.1$ $1 - 0.1 < \frac{1}{r} < 1 + 0.1$ $\frac{9}{10} < \frac{1}{x} < \frac{11}{10}$ $\frac{10}{9} > x > \frac{10}{11}$ $\frac{10}{9} - 1 > x - 1 > \frac{10}{11} - 1$

 $\frac{1}{9} > x - 1 > -\frac{1}{11}$.

So take $\delta = \frac{1}{11}$. Then $0 < |x - 1| < \delta$ implies $-\frac{1}{11} < x - 1 < \frac{1}{11}$ $-\frac{1}{11} < x - 1 < \frac{1}{9}.$

Using the first series of equivalent inequalities, you obtain

$$\left|f(x) - 1\right| = \left|\frac{1}{x} - 1\right| < \epsilon < 0.1$$

23. $\lim_{x \to 2} (3x + 2) = 8 = L$ |(3x + 2) - 8| < 0.01 |3x - 6| < 0.01 3|x - 2| < 0.01 $0 < |x - 2| < \frac{0.01}{3} \approx 0.0033 = \delta$ Hence, if $0 < |x - 2| < \delta = \frac{0.01}{3}$, you have 3|x - 2| < 0.01 |3x - 6| < 0.01 |(3x + 2) - 8| < 0.01|f(x) - L| < 0.01

27. $\lim_{x \to 2} (x + 3) = 5$ Given $\epsilon > 0$: $|(x + 3) - 5| < \epsilon$ $|x - 2| < \epsilon = \delta$ Hence, let $\delta = \epsilon$. Hence, if $0 < |x - 2| < \delta = \epsilon$, you have $|x - 2| < \epsilon$ $|(x + 3) - 5| < \epsilon$ $|f(x) - L| < \epsilon$

31. $\lim_{x \to 6} 3 = 3$ Given $\epsilon > 0$: $|3 - 3| < \epsilon$ $0 < \epsilon$ Hence, any $\delta > 0$ will work. Hence, for any $\delta > 0$, you have $|3 - 3| < \epsilon$ $|f(x) - L| < \epsilon$ **25.** $\lim_{x \to 2} (x^2 - 3) = 1 = L$ $|(x^2 - 3) - 1| < 0.01$ $|x^2 - 4| < 0.01$ |(x+2)(x-2)| < 0.01|x+2| |x-2| < 0.01 $|x-2| < \frac{0.01}{|x+2|}$ If we assume 1 < x < 3, then $\delta = 0.01/5 = 0.002$. Hence, if $0 < |x - 2| < \delta = 0.002$, you have $|x - 2| < 0.002 = \frac{1}{5}(0.01) < \frac{1}{|x + 2|}(0.01)$ |x+2||x-2| < 0.01 $|x^2 - 4| < 0.01$ $|(x^2 - 3) - 1| < 0.01$ |f(x) - L| < 0.01**29.** $\lim_{x \to -4} \left(\frac{1}{2}x - 1 \right) = \frac{1}{2}(-4) - 1 = -3$ Given $\epsilon > 0$: $\left| \left(\frac{1}{2}x - 1 \right) - (-3) \right| < \epsilon$ $\left|\frac{1}{2}x+2\right| < \epsilon$ $\frac{1}{2}|x-(-4)| < \epsilon$ $|x - (-4)| < 2\epsilon$ Hence, let $\delta = 2\epsilon$. Hence, if $0 < |x - (-4)| < \delta = 2\epsilon$, you have $|x - (-4)| < 2\epsilon$ $\left|\frac{1}{2}x+2\right| < \epsilon$ $\left|\left(\frac{1}{2}x-1\right)+3\right| < \epsilon$ $|f(x) - L| < \epsilon$ **33.** $\lim_{x \to 0} \sqrt[3]{x} = 0$ Given $\epsilon > 0$: $\left|\sqrt[3]{x} - 0\right| < \epsilon$ $\left|\sqrt[3]{x}\right| < \epsilon$ $|x| < \epsilon^3 = \delta$ Hence, let $\delta = \epsilon^3$. Hence for $0 < |x - 0| < \delta = \epsilon^3$, you have $|x| < \epsilon^3$ $|\sqrt[3]{x}| < \epsilon$ $|\sqrt[3]{x}-0| < \epsilon$ $|f(x) - L| < \epsilon$

35. $\lim_{x \to -2} |x - 2| = |(-2) - 2| = 4$ **37.** $\lim_{x \to 1} (x^2 + 1) = 2$ Given $\epsilon > 0$: Given $\epsilon > 0$: $||x-2|-4| < \epsilon$ $|(x^2+1)-2| < \epsilon$ $|-(x-2)-4| < \epsilon \quad (x-2<0)$ $|(x+1)(x-1)| < \epsilon$ $|-x-2| = |x+2| = |x-(-2)| < \epsilon$ Hence, $\delta = \epsilon$. Hence for $0 < |x - (-2)| < \delta = \epsilon$, you have If we assume 0 < x < 2, then $\delta = \epsilon/3$. $|x+2| < \epsilon$ Hence for $0 < |x - 1| < \delta = \frac{\epsilon}{3}$, you have $|-(x+2)| < \epsilon$ $|-(x-2)-4| < \epsilon$ $||x-2|-4| < \epsilon$ (because x - 20) $|f(x) - L| < \epsilon$ $|(x^2 + 1) - 2| < \epsilon$

The domain is $[-5, 4) \cup (4, \infty)$. The graphing utility does not show the hole at $\left(4, \frac{1}{6}\right)$. **41.** $f(x) = \frac{x-9}{\sqrt{x}-3}$ $\lim_{x \to 9} f(x) = 6$ 10

 $|x^2 - 1| < \epsilon$

 $|f(x) - 2| < \epsilon$

 $|x^2 - 1| < \epsilon$

 $|x-1| < \frac{\epsilon}{|x+1|}$

 $|x-1| < \frac{1}{3}\epsilon < \frac{1}{|x+1|}\epsilon$

The domain is all $x \ge 0$ except x = 9. The graphing utility does not show the hole at (9, 6).

43. $\lim_{x \to \infty} f(x) = 25$ means that the values of f approach 25 as x gets closer and closer to 8.

45. (i) The values of f approach different numbers as x approaches c from different sides of c:

(ii) The values of f increase without bound as x approaches c:

(iii) The values of f oscillate between two fixed numbers as x approaches c:

x	f(x)	x	f(x)
-0.1	2.867972	0.1	2.593742
-0.01	2.731999	0.01	2.704814
-0.001	2.719642	0.001	2.716942
-0.0001	2.718418	0.0001	2.718146
-0.00001	2.718295	0.00001	2.718268
-0.000001	2.718283	0.000001	2.718280

49. False; $f(x) = (\sin x)/x$ is undefined when x = 0. From Exercise 7, we have 51. False; let

-

5

53. Answers will vary.

55. If $\lim_{x \to c} f(x) = L_1$ and $\lim_{x \to c} f(x) = L_2$, then for every $\epsilon > 0$, there exists $\delta_1 > 0$ and $\delta_2 > 0$ such that $|x - c| < \delta_1 \implies |f(x) - L_1| < \epsilon$ and $|x - c| < \delta_2 \implies |f(x) - L_2| < \epsilon$. Let δ equal the smaller of δ_1 and δ_2 . Then for $|x - c| < \delta$, we have $|L_1 - L_2| = |L_1 - f(x) + f(x) - L_2| \le |L_1 - f(x)| + |f(x) - L_2| < \epsilon + \epsilon$.

Therefore, $|L_1 - L_2| < 2\epsilon$. Since $\epsilon > 0$ is arbitrary, it follows that $L_1 = L_2$.

57. $\lim [f(x) - L] = 0$ means that for every $\epsilon > 0$ there exists $\delta > 0$ such that if

 $0 < |x - c| < \delta,$

then

$$|(f(x) - L) - 0| < \epsilon$$

This means the same as $|f(x) - L| < \epsilon$ when $0 < |x - c| < \delta$.

Thus, $\lim_{x \to \infty} f(x) = L$.

Section 1.3 Evaluating Limits Analytically

13. $\lim_{x \to 2} \frac{1}{x} = \frac{1}{2}$ **15.** $\lim_{x \to 1} \frac{x-3}{x^2+4} = \frac{1-3}{1^2+4} = \frac{-2}{5} = -\frac{2}{5}$

17. $\lim_{x \to 7} \frac{5x}{\sqrt{x+2}} = \frac{5(7)}{\sqrt{7+2}} = \frac{35}{\sqrt{9}} = \frac{35}{3}$ **19.** $\lim_{x \to 3} \sqrt{x+1} = \sqrt{3+1} = 2$

- **21.** $\lim_{x \to -4} (x + 3)^2 = (-4 + 3)^2 = 1$
- 25. (a) $\lim_{x \to 1} f(x) = 4 1 = 3$ (b) $\lim_{x \to 3} g(x) = \sqrt{3 + 1} = 2$ (c) $\lim_{x \to 1} g(f(x)) = g(3) = 2$

29.
$$\lim_{x \to 2} \cos \frac{\pi x}{3} = \cos \frac{\pi 2}{3} = -\frac{1}{2}$$

33. $\lim_{x \to 5\pi/6} \sin x = \sin \frac{5\pi}{6} = \frac{1}{2}$
37. (a) $\lim [5g(x)] = 5 \lim g(x) = 5(3) = 15$

41.
$$f(x) = -2x + 1$$
 and $g(x) = \frac{-2x^2 + x}{x}$ agree except at $x = 0$.
(a) $\lim_{x \to 0} g(x) = \lim_{x \to 0} f(x) = 1$
(b) $\lim_{x \to -1} g(x) = \lim_{x \to -1} f(x) = 3$

45.
$$f(x) = \frac{x^2 - 1}{x + 1}$$
 and $g(x) = x - 1$ agree except at $x = -1$.

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} g(x) = -2$$

49.
$$\lim_{x \to 5} \frac{x-5}{x^2-25} = \lim_{x \to 5} \frac{x-5}{(x+5)(x-5)}$$
$$= \lim_{x \to 5} \frac{1}{x+5} = \frac{1}{10}$$

23. (a)
$$\lim_{x \to 1} f(x) = 5 - 1 = 4$$

(b) $\lim_{x \to 4} g(x) = 4^3 = 64$
(c) $\lim_{x \to 1} g(f(x)) = g(f(1)) = g(4) = 64$

27.
$$\lim_{x \to \pi/2} \sin x = \sin \frac{\pi}{2} = 1$$

31.
$$\lim_{x \to 0} \sec 2x = \sec 0 = 1$$

35.
$$\lim_{x \to 3} \tan\left(\frac{\pi x}{4}\right) = \tan\frac{3\pi}{4} = -1$$

39. (a)
$$\lim_{x \to c} [f(x)]^3 = [\lim_{x \to c} f(x)]^3 = (4)^3 = 64$$

(b)
$$\lim_{x \to c} \sqrt{f(x)} = \sqrt{\lim_{x \to c} f(x)} = \sqrt{4} = 2$$

(c)
$$\lim_{x \to c} [3f(x)] = 3 \lim_{x \to c} f(x) = 3(4) = 12$$

(d)
$$\lim_{x \to c} [f(x)]^{3/2} = [\lim_{x \to c} f(x)]^{3/2} = (4)^{3/2} = 8$$

43.
$$f(x) = x(x + 1)$$
 and $g(x) = \frac{x^3 - x}{x - 1}$ agree except at $x = 1$.
(a) $\lim_{x \to 1} g(x) = \lim_{x \to 1} f(x) = 2$
(b) $\lim_{x \to -1} g(x) = \lim_{x \to -1} f(x) = 0$

47.
$$f(x) = \frac{x^3 - 8}{x - 2}$$
 and $g(x) = x^2 + 2x + 4$ agree except at $x = 2$.

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} g(x) = 12$$

51.
$$\lim_{x \to -3} \frac{x^2 + x - 6}{x^2 - 9} = \lim_{x \to -3} \frac{(x + 3)(x - 2)}{(x + 3)(x - 3)}$$
$$= \lim_{x \to -3} \frac{x - 2}{x - 3} = \frac{-5}{-6} = \frac{5}{6}$$

53.
$$\lim_{x \to 0} \frac{\sqrt{x+5} - \sqrt{5}}{x} = \lim_{x \to 0} \frac{\sqrt{x+5} - \sqrt{5}}{x} \cdot \frac{\sqrt{x+5} + \sqrt{5}}{\sqrt{x+5} + \sqrt{5}}$$
$$= \lim_{x \to 0} \frac{(x+5) - 5}{x(\sqrt{x+5} + \sqrt{5})} = \lim_{x \to 0} \frac{1}{\sqrt{x+5} + \sqrt{5}} = \frac{1}{2\sqrt{5}} = \frac{\sqrt{5}}{10}$$

55.
$$\lim_{x \to 4} \frac{\sqrt{x+5-3}}{x-4} = \lim_{x \to 4} \frac{\sqrt{x+5-3}}{x-4} \cdot \frac{\sqrt{x+5+3}}{\sqrt{x+5+3}}$$
$$= \lim_{x \to 4} \frac{(x+5)-9}{(x-4)(\sqrt{x+5}+3)} = \lim_{x \to 4} \frac{1}{\sqrt{x+5+3}} = \frac{1}{\sqrt{9}+3} = \frac{1}{6}$$

57.
$$\lim_{x \to 0} \frac{\frac{1}{2+x} - \frac{1}{2}}{x} = \lim_{x \to 0} \frac{\frac{2 - (2+x)}{2(2+x)}}{x} = \lim_{x \to 0} \frac{-1}{2(2+x)} = -\frac{1}{4}$$

59.
$$\lim_{\Delta x \to 0} \frac{2(x + \Delta x) - 2x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2x + 2\Delta x - 2x}{\Delta x} = \lim_{\Delta x \to 0} 2 = 2$$

61.
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - 2(x + \Delta x) + 1 - (x^2 - 2x + 1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 - 2x - 2\Delta x + 1 - x^2 + 2x - 1}{\Delta x}$$
$$= \lim_{\Delta x \to 0} (2x + \Delta x - 2) = 2x - 2$$

$$= \lim_{x \to 0} \frac{x+2-2}{x(\sqrt{x+2}+\sqrt{2})} = \lim_{x \to 0} \frac{1}{\sqrt{x+2}+\sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4} \approx 0.354$$

Analytically, $\lim_{x \to 0} \frac{\frac{1}{2+x} - \frac{1}{2}}{x} = \lim_{x \to 0} \frac{2 - (2+x)}{2(2+x)} \cdot \frac{1}{x} = \lim_{x \to 0} \frac{-x}{2(2+x)} \cdot \frac{1}{x} = \lim_{x \to 0} \frac{-1}{2(2+x)} = -\frac{1}{4}.$

67.
$$\lim_{x \to 0} \frac{\sin x}{5x} = \lim_{x \to 0} \left[\left(\frac{\sin x}{x} \right) \left(\frac{1}{5} \right) \right] = (1) \left(\frac{1}{5} \right) = \frac{1}{5}$$

71.
$$\lim_{x \to 0} \frac{\sin^2 x}{x} = \lim_{x \to 0} \left[\frac{\sin x}{x} \sin x \right] = (1) \sin 0 = 0$$

75.
$$\lim_{x \to \pi/2} \frac{\cos x}{\cot x} = \lim_{x \to \pi/2} \sin x = 1$$

81. $f(x) = \frac{\sin x^2}{x}$

 $\frac{x}{f(x)}$

-0.1

-0.099998

69.
$$\lim_{x \to 0} \frac{\sin x(1 - \cos x)}{2x^2} = \lim_{x \to 0} \left[\frac{1}{2} \cdot \frac{\sin x}{x} \cdot \frac{1 - \cos x}{x} \right]$$
$$= \frac{1}{2}(1)(0) = 0$$

73.
$$\lim_{h \to 0} \frac{(1 - \cos h)^2}{h} = \lim_{h \to 0} \left[\frac{1 - \cos h}{h} (1 - \cos h) \right]$$
$$= (0)(0) = 0$$

77.
$$\lim_{t \to 0} \frac{\sin 3t}{2t} = \lim_{t \to 0} \left(\frac{\sin 3t}{3t} \right) \left(\frac{3}{2} \right) = (1) \left(\frac{3}{2} \right) = \frac{3}{2}$$

Analytically,
$$\lim_{t \to 0} \frac{\sin 3t}{t} = \lim_{t \to 0} 3\left(\frac{\sin 3t}{3t}\right) = 3(1) = 3.$$

-0.01

-0.01

Analytically, $\lim_{x \to 0} \frac{\sin x^2}{x} = \lim_{x \to 0} x \left(\frac{\sin x^2}{x^2} \right) = 0(1) = 0.$

The limit appear to equal 3.

83.
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{2(x+h) + 3 - (2x+3)}{h} = \lim_{h \to 0} \frac{2x + 2h + 3 - 2x - 3}{h} = \lim_{h \to 0} \frac{2h}{h} = 2$$

0.01 0.1

0.01

0.099998

85.
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{4}{x+h} - \frac{4}{x}}{h} = \lim_{h \to 0} \frac{4x - 4(x+h)}{(x+h)xh} = \lim_{h \to 0} \frac{-4}{(x+h)x} = \frac{-4}{x^2}$$

-0.001 0 0.001

? 0.001

-0.001

87.
$$\lim_{x \to 0} (4 - x^2) \le \lim_{x \to 0} f(x) \le \lim_{x \to 0} (4 + x^2)$$
$$4 \le \lim_{x \to 0} f(x) \le 4$$
Therefore,
$$\lim_{x \to 0} f(x) = 4.$$

89. $f(x) = x \cos x$

 $\lim_{x\to 0} \left(x \cos x \right) = 0$

 $\lim_{x \to 0} |x| \sin x = 0$

95. We say that two functions *f* and *g* agree at all but one point (on an open interval) if f(x) = g(x) for all *x* in the interval except for x = c, where *c* is in the interval.

97. An indeterminant form is obtained when evaluating a limit using direct substitution produces a meaningless fractional expression such as 0/0. That is,

$$\lim_{x \to c} \frac{f(x)}{g(x)}$$

for which
$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$$

99.
$$f(x) = x, g(x) = \sin x, h(x) = \frac{\sin x}{x}$$

When you are "close to" 0 the magnitude of *f* is approximately equal to the magnitude of *g*. Thus, $|g|/|f| \approx 1$ when *x* is "close to" 0.

101. $s(t) = -16t^2 + 1000$

$$\lim_{t \to 5} \frac{s(5) - s(t)}{5 - t} = \lim_{t \to 5} \frac{600 - (-16t^2 + 1000)}{5 - t} = \lim_{t \to 5} \frac{16(t + 5)(t - 5)}{-(t - 5)} = \lim_{t \to 5} -16(t + 5) = -160 \text{ ft/sec.}$$

Speed = 160 ft/sec

103. $s(t) = -4.9t^2 + 150$

$$\lim_{t \to 3} \frac{s(3) - s(t)}{3 - t} = \lim_{t \to 3} \frac{-4.9(3^2) + 150 - (-4.9t^2 + 150)}{3 - t} = \lim_{t \to 3} \frac{-4.9(9 - t^2)}{3 - t}$$
$$= \lim_{x \to 3} \frac{-4.9(3 - t)(3 + t)}{3 - t} = \lim_{x \to 3} -4.9(3 + t) = -29.4 \text{ m/sec}$$

105. Let f(x) = 1/x and g(x) = -1/x. $\lim_{x \to 0} f(x)$ and $\lim_{x \to 0} g(x)$ do not exist.

$$\lim_{x \to 0} \left[f(x) + g(x) \right] = \lim_{x \to 0} \left[\frac{1}{x} + \left(-\frac{1}{x} \right) \right] = \lim_{x \to 0} \left[0 \right] = 0$$

- **107.** Given f(x) = b, show that for every $\epsilon > 0$ there exists a $\delta > 0$ such that $|f(x) b| < \epsilon$ whenever $|x c| < \delta$. Since $|f(x) b| = |b b| = 0 < \epsilon$ for any $\epsilon > 0$, then any value of $\delta > 0$ will work.
- **109.** If b = 0, then the property is true because both sides are equal to 0. If $b \neq 0$, let $\epsilon > 0$ be given. Since $\lim_{x \to c} f(x) = L$, there exists $\delta > 0$ such that $|f(x) L| < \epsilon/|b|$ whenever $0 < |x c| < \delta$. Hence, wherever $0 < |x c| < \delta$, we have

$$|b||f(x) - L| < \epsilon$$
 or $|bf(x) - bL| < \epsilon$

which implies that $\lim_{x \to c} [bf(x)] = bL$.

111.
$$-M|f(x)| \le f(x)g(x) \le M|f(x)|$$
$$\lim_{x \to c} (-M|f(x)|) \le \lim_{x \to c} f(x)g(x) \le \lim_{x \to c} (M|f(x)|)$$
$$-M(0) \le \lim_{x \to c} f(x)g(x) \le M(0)$$
$$0 \le \lim_{x \to c} f(x)g(x) \le 0$$
Therefore,
$$\lim_{x \to c} f(x)g(x) = 0.$$

117. False. The limit does not exist.

119. Let

$$f(x) = \begin{cases} 4, & \text{if } x \ge 0\\ -4, & \text{if } x < 0 \end{cases}$$
$$\lim_{x \to 0} |f(x)| = \lim_{x \to 0} 4 = 4$$

 $\lim_{x \to 0} f(x) \text{ does not exist since for } x < 0, f(x) = -4 \text{ and for } x \ge 0, f(x) = 4.$

121. $f(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ 1, & \text{if } x \text{ is irrational} \end{cases}$ $g(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ x, & \text{if } x \text{ is irrational} \end{cases}$

 $\lim_{x \to 0} f(x)$ does not exist.

No matter how "close to" 0 x is, there are still an infinite number of rational and irrational numbers so that $\lim_{x\to 0} f(x)$ does not exist.

$$\lim_{x\to 0}g(x)=0.$$

When x is "close to" 0, both parts of the function are "close to" 0.

123. (a)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \frac{1 + \cos x}{1 + \cos x}$$
 (b) Thus, $\frac{1 - \cos x}{x^2} \approx \frac{1}{2} \implies 1 - \cos x \approx \frac{1}{2}x^2$
$$= \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos x)} \implies \cos x \approx 1 - \frac{1}{2}x^2 \text{ for } x \approx 0.$$
$$= \lim_{x \to 0} \frac{\sin^2 x}{x^2} \cdot \frac{1}{1 + \cos x}$$
 (c) $\cos(0.1) \approx 1 - \frac{1}{2}(0.1)^2 = 0.995$
$$= (1) \left(\frac{1}{2}\right) = \frac{1}{2}$$
 (d) $\cos(0.1) \approx 0.9950$, which agrees with part (c).

Section 1.4 **Continuity and One-Sided Limits**

1. (a)
$$\lim_{x\to 3^+} f(x) = 1$$
3. (a) $\lim_{x\to 3^+} f(x) = 0$ 5. (a) $\lim_{x\to 4^+} f(x) = 2$ (b) $\lim_{x\to 3^-} f(x) = 1$ (b) $\lim_{x\to 3^-} f(x) = 0$ (b) $\lim_{x\to 4^-} f(x) = -2$ (c) $\lim_{x\to 3} f(x) = 1$ (c) $\lim_{x\to 3} f(x) = 0$ (c) $\lim_{x\to 4} f(x) = 0$ The function is continuous at
 $x = 3$.The function is NOT continuous at
 $x = 3$.The function is NOT continuous at
 $x = 4$.

7.
$$\lim_{x \to 5^+} \frac{x-5}{x^2-25} = \lim_{x \to 5^+} \frac{1}{x+5} = \frac{1}{10}$$

9.
$$\lim_{x \to -3^-} \frac{x}{\sqrt{x^2 - 9}}$$
 does not exist because $\frac{x}{\sqrt{x^2 - 9}}$ grows without bound as $x \to -3^-$.

11.
$$\lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} \frac{-x}{x} = -1.$$

13.
$$\lim_{\Delta x \to 0^{-}} \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{x - (x + \Delta x)}{x(x + \Delta x)} \cdot \frac{1}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{-\Delta x}{x(x + \Delta x)} \cdot \frac{1}{\Delta x}$$
$$= \lim_{\Delta x \to 0^{-}} \frac{-1}{x(x + \Delta x)}$$
$$= \frac{-1}{x(x + 0)} = -\frac{1}{x^{2}}$$

15.
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \frac{x+2}{2} = \frac{5}{2}$$
17.
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x+1) = 2$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{3}+1) = 2$$

$$\lim_{x \to 1} f(x) = 2$$

 $\lim_{x \to \pi^+} \cot x \text{ and } \lim_{x \to \pi^-} \cot x \text{ do not exist.}$

23. $\lim_{x \to 3} (2 - [[-x]])$ does not exist because $\lim_{x \to 3^{-}} (2 - [[-x]]) = 2 - (-3) = 5$

19. lim $\cot x$ does not exist since

25. $f(x) = \frac{1}{x^2 - 4}$

has discontinuities at x = -2 and x = 2 since f(-2) and f(2) are not defined.

27. $f(x) = \frac{[x]}{2} + x$

has discontinuities at each integer k since $\lim_{x\to k^-} f(x) \neq \lim_{x\to k^+} f(x)$.

- and $\lim_{x \to 3^+} (2 - [[-x]]) = 2 - (-4) = 6.$
- **29.** $g(x) = \sqrt{25 x^2}$ is continuous on [-5, 5].
- **31.** $\lim_{x \to 0^-} f(x) = 3 = \lim_{x \to 0^+} f(x).$ **33.** $f(x) = x^2 - 2x + 1$ is continuous for all real *x*. f is continuous on [-1, 4].

21. $\lim_{x \to 4^{-}} (3[x] - 5) = 3(3) - 5 = 4$ ([x] = 3 for 3 < x < 4)

35. $f(x) = 3x - \cos x$ is continuous for all real x.

37.
$$f(x) = \frac{x}{x^2 - x}$$
 is not continuous at $x = 0, 1$. Since

 $\frac{x}{x^2 - x} = \frac{1}{x - 1}$ for $x \neq 0, x = 0$ is a removable discontinuity, whereas x = 1 is a nonremovable discontinuity.

39.
$$f(x) = \frac{x}{x^2 + 1}$$
 is continuous for all real x.

41.
$$f(x) = \frac{x+2}{(x+2)(x-5)}$$

has a nonremovable discontinuity at x = 5 since $\lim_{x\to 5} f(x)$ does not exist, and has a removable discontinuity at x = -2 since

$$\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{1}{x - 5} = -\frac{1}{7}.$$

43. $f(x) = \frac{|x+2|}{x+2}$ has a nonremovable discontinuity at x = -2 since $\lim_{x \to -2} f(x)$ does not exist.

45. $f(x) = \begin{cases} x, & x \le 1 \\ x^2, & x > 1 \end{cases}$

has a **possible** discontinuity at x = 1.

1.
$$f(1) = 1$$

2. $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x = 1$
 $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x^{2} = 1$
3. $f(1) = \lim_{x \to 1} f(x)$

f is continuous at x = 1, therefore, f is continuous for all real x.

47.
$$f(x) = \begin{cases} \frac{x}{2} + 1, & x \le 2\\ 3 - x, & x > 2 \end{cases}$$
 has a **possible** discontinuity at $x = 2$.
1.
$$f(2) = \frac{2}{2} + 1 = 2$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \left(\frac{x}{2} + 1\right) = 2$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (3 - x) = 1$$

Therefore, *f* has a nonremovable discontinuity at x = 2.

$$49. \ f(x) = \begin{cases} \tan \frac{\pi x}{4}, & |x| < 1 \\ |x| \ge 1 \end{cases} = \begin{cases} \tan \frac{\pi x}{4}, & -1 < x < 1 \\ |x| \ge 1 \end{cases} \text{ has possible discontinuities at } x = -1, x = 1. \end{cases}$$

$$1. \ f(-1) = -1 \qquad f(1) = 1$$

$$2. \ \lim_{x \to -1} f(x) = -1 \qquad \lim_{x \to 1} f(x) = 1$$

$$3. \ f(-1) = \lim_{x \to -1} f(x) \qquad f(1) = \lim_{x \to 1} f(x)$$

f is continuous at $x = \pm 1$, therefore, *f* is continuous for all real *x*.

51. $f(x) = \csc 2x$ has nonremovable discontinuities at integer multiples of $\pi/2$.

53. f(x) = [x - 1] has nonremovable discontinuities at each integer *k*.

57.
$$f(2) = 8$$

Find a so that
$$\lim_{x \to 2^+} ax^2 = 8 \implies a = \frac{8}{2^2} = 2.$$

59. Find a and b such that $\lim_{x \to -1^+} (ax + b) = -a + b = 2$ and $\lim_{x \to 3^-} (ax + b) = 3a + b = -2$.

$$a - b = -2$$

$$(+) 3a + b = -2$$

$$4a = -4$$

$$a = -1$$

$$b = -2 + (-1) = 1$$

$$f(x) = \begin{cases} 2, & x \le -1 \\ -x + 1, & -1 < x < 3 \\ -2, & x \ge 3 \end{cases}$$

61.
$$f(g(x)) = (x - 1)^2$$

Continuous for all real x.

63.
$$f(g(x)) = \frac{1}{(x^2 + 5) - 6} = \frac{1}{x^2 - 1}$$

Nonremovable discontinuities at $x = \pm 1$

65. y = [x] - x

Nonremovable discontinuity at each integer

69. $f(x) = \frac{x}{x^2 + 1}$

Continuous on $(-\infty, \infty)$

73. $f(x) = \frac{\sin x}{x}$

The graph **appears** to be continuous on the interval [-4, 4]. Since f(0) is not defined, we know that f has a discontinuity at x = 0. This discontinuity is removable so it does not show up on the graph.

67.
$$f(x) = \begin{cases} 2x - 4, & x \le 3\\ x^2 - 2x, & x > 3 \end{cases}$$

Nonremovable discontinuity at x = 3

71.
$$f(x) = \sec \frac{\pi x}{4}$$

Continuous on: . . . , (-6, -2), (-2, 2), (2, 6), (6, 10), . . .

75. $f(x) = \frac{1}{16}x^4 - x^3 + 3$ is continuous on [1, 2].

 $f(1) = \frac{33}{16}$ and f(2) = -4. By the Intermediate Value Theorem, f(c) = 0 for at least one value of *c* between 1 and 2.

77. $f(x) = x^2 - 2 - \cos x$ is continuous on $[0, \pi]$.

f(0) = -3 and $f(\pi) = \pi^2 - 1 > 0$. By the Intermediate Value Theorem, f(c) = 0 for the least one value of c between 0 and π .

81. $g(t) = 2 \cos t - 3t$

g is continuous on [0, 1].

g(0) = 2 > 0 and $g(1) \approx -1.9 < 0$.

By the Intermediate Value Theorem, g(t) = 0 for at least one value *c* between 0 and 1. Using a graphing utility, we find that $t \approx 0.5636$.

85.
$$f(x) = x^3 - x^2 + x - 2$$

f is continuous on [0, 3].

$$f(0) = -2$$
 and $f(3) = 19$

$$-2 < 4 < 19$$

The Intermediate Value Theorem applies.

$$x^{3} - x^{2} + x - 2 = 4$$

$$x^{3} - x^{2} + x - 6 = 0$$

$$(x - 2)(x^{2} + x + 3) = 0$$

$$x = 2$$

$$(x^{2} + x + 2) \text{ have needed} = 2 \text{ have a real order}$$

 $(x^2 + x + 3$ has no real solution.)

$$c = 2$$

Thus, f(2) = 4.

The function is not continuous at x = 3 because $\lim_{x \to 3^+} f(x) = 1 \neq 0 = \lim_{x \to 3^-} f(x)$.

79. $f(x) = x^3 + x - 1$

f(x) is continuous on [0, 1].

f(0) = -1 and f(1) = 1

By the Intermediate Value Theorem, f(x) = 0 for at least one value of *c* between 0 and 1. Using a graphing utility, we find that $x \approx 0.6823$.

83.
$$f(x) = x^2 + x - 1$$

f is continuous on [0, 5]. f(0) = -1 and f(5) = 29-1 < 11 < 29

The Intermediate Value Theorem applies.

$$x^{2} + x - 1 = 11$$

$$x^{2} + x - 12 = 0$$

$$(x + 4)(x - 3) = 0$$

$$x = -4 \text{ or } x = 3$$

$$c = 3 (x = -4 \text{ is not in the interval.})$$

Thus, f(3) = 11.

- 87. (a) The limit does not exist at x = c.
 - (b) The function is not defined at x = c.
 - (c) The limit exists at x = c, but it is not equal to the value of the function at x = c.
 - (d) The limit does not exist at x = c.

91. The functions agree for integer values of *x*:

$$g(x) = 3 - [[-x]] = 3 - (-x) = 3 + x$$

$$f(x) = 3 + [[x]] = 3 + x$$
for x an integer

However, for non-integer values of x, the functions differ by 1.

$$f(x) = 3 + [[x]] = g(x) - 1 = 2 - [[-x]].$$

For example, $f(\frac{1}{2}) = 3 + 0 = 3$, $g(\frac{1}{2}) = 3 - (-1) = 4$.

93.
$$N(t) = 25\left(2\left\lfloor\frac{t+2}{2}\right\rfloor - t\right)$$

t	0	1	1.8	2	3	3.8
N(t)	50	25	5	50	25	5

Discontinuous at every positive even integer. The company replenishes its inventory every two months.

95. Let $V = \frac{4}{3}\pi r^3$ be the volume of a sphere of radius *r*.

 $V(1) = \frac{4}{3}\pi \approx 4.19$ $V(5) = \frac{4}{3}\pi(5^3) \approx 52$

$$V(5) = \frac{4}{3}\pi(5^3) \approx 523.6$$

Since 4.19 < 275 < 523.6, the Intermediate Value Theorem implies that there is at least one value *r* between 1 and 5 such that V(r) = 275. (In fact, $r \approx 4.0341$.)

97. Let c be any real number. Then $\lim_{x\to c} f(x)$ does not exist since there are both rational and

irrational numbers arbitrarily close to c. Therefore, f is not continuous at c.

(c) $\lim_{x\to 0} \operatorname{sgn}(x)$ does not exist.

105. (a) $f(x) = \begin{cases} 0 & 0 \le x < b \\ b & b < x \le 2b \end{cases}$

NOT continuous at x = b.

101. True; if f(x) = g(x), $x \neq c$, then $\lim_{x \to c} f(x) = \lim_{x \to c} g(x)$ and at least one of these limits (if they exist) does not equal the corresponding function at x = c.

103. False; f(1) is not defined and $\lim_{x \to 1} f(x)$ does not exist.

Continuous on [0, 2b].

107. $f(x) = \frac{\sqrt{x+c^2}-c}{x}, \ c > 0$

Domain: $x + c^2 \ge 0 \implies x \ge -c^2$ and $x \ne 0$, $[-c^2, 0) \cup (0, \infty)$

$$\lim_{x \to 0} \frac{\sqrt{x + c^2} - c}{x} = \lim_{x \to 0} \frac{\sqrt{x + c^2} - c}{x} \cdot \frac{\sqrt{x + c^2} + c}{\sqrt{x + c^2} + c}$$
$$= \lim_{x \to 0} \frac{(x + c^2) - c^2}{x [\sqrt{x + c^2} + c]} = \lim_{x \to 0} \frac{1}{\sqrt{x + c^2} + c} = \frac{1}{2c}$$

Define f(0) = 1/(2c) to make f continuous at x = 0.

109. h(x) = x[[x]]

h has nonremovable discontinuities at $x = \pm 1, \pm 2, \pm 3, \dots$.

Section 1.5 Infinite Limits

1.
$$\lim_{x \to -2^+} 2 \left| \frac{x}{x^2 - 4} \right| = \infty$$

3. $\lim_{x \to -2^+} \tan \frac{\pi x}{4} = -\infty$
 $\lim_{x \to -2^-} 2 \left| \frac{x}{x^2 - 4} \right| = \infty$
 $\lim_{x \to -2^-} \tan \frac{\pi x}{4} = \infty$

5. $f(x) = \frac{1}{x^2 - 9}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
f(x)	0.308	1.639	16.64	166.6	-166.7	-16.69	-1.695	-0.364

 $\lim_{x\to -3^-} f(x) = \infty$

 $\lim_{x \to -3^+} f(x) = -\infty$

7.
$$f(x) = \frac{x^2}{x^2 - 9}$$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
f(x)	3.769	15.75	150.8	1501	- 1499	-149.3	- 14.25	-2.273

 $\lim_{x\to -3^-} f(x) = \infty$

 $\lim_{x \to -3^+} f(x) = -\infty$

- 9. $\lim_{x\to 0^+} \frac{1}{x^2} = \infty = \lim_{x\to 0^-} \frac{1}{x^2}$
 - Therefore, x = 0 is a vertical asymptote.

11.
$$\lim_{x \to 2^+} \frac{x^2 - 2}{(x - 2)(x + 1)} = \infty$$
$$\lim_{x \to 2^-} \frac{x^2 - 2}{(x - 2)(x + 1)} = -\infty$$

Therefore, x = 2 is a vertical asymptote.

$$\lim_{x \to -1^+} \frac{x^2 - 2}{(x - 2)(x + 1)} = \infty$$
$$\lim_{x \to -1^-} \frac{x^2 - 2}{(x - 2)(x + 1)} = -\infty$$

Therefore, x = -1 is a vertical asymptote.

- 15. No vertical asymptote since the denominator is never zero.
- 13. $\lim_{x \to -2^-} \frac{x^2}{x^2 4} = \infty$ and $\lim_{x \to -2^+} \frac{x^2}{x^2 4} = -\infty$

Therefore, x = -2 is a vertical asymptote.

$$\lim_{x \to 2^{-}} \frac{x^2}{x^2 - 4} = -\infty \text{ and } \lim_{x \to 2^{+}} \frac{x^2}{x^2 - 4} = \infty$$

Therefore, x = 2 is a vertical asymptote.

17.
$$f(x) = \tan 2x = \frac{\sin 2x}{\cos 2x}$$
 has vertical asymptotes at
 $x = \frac{(2n+1)\pi}{4} = \frac{\pi}{4} + \frac{n\pi}{2}$, *n* any integer.

21.
$$\lim_{x \to -2^+} \frac{x}{(x+2)(x-1)} = \infty$$
$$\lim_{x \to -2^-} \frac{x}{(x+2)(x-1)} = -\infty$$

Therefore, x = -2 is a vertical asymptote.

$$\lim_{x \to 1^+} \frac{x}{(x+2)(x-1)} = \infty$$
$$\lim_{x \to 1^-} \frac{x}{(x+2)(x-1)} = -\infty$$

Therefore, x = 1 is a vertical asymptote.

25.
$$f(x) = \frac{(x-5)(x+3)}{(x-5)(x^2+1)} = \frac{x+3}{x^2+1}, x \neq 5$$

No vertical asymptotes. The graph has a hole at x = 5.

19.
$$\lim_{t \to 0^+} \left(1 - \frac{4}{t^2} \right) = -\infty = \lim_{t \to 0^-} \left(1 - \frac{4}{t^2} \right)$$

Therefore, t = 0 is a vertical asymptote.

23.
$$f(x) = \frac{x^3 + 1}{x + 1} = \frac{(x + 1)(x^2 - x + 1)}{x + 1}$$

has no vertical asymptote since

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} (x^2 - x + 1) = 3$$

27. $s(t) = \frac{t}{\sin t}$ has vertical asymptotes at $t = n\pi$, n

a nonzero integer. There is no vertical asymptote at t = 0 since

$$\lim_{t \to 0} \frac{t}{\sin t} = 1.$$

Removable discontinuity at x = -1

- **33.** $\lim_{x \to 2^+} \frac{x-3}{x-2} = -\infty$
- **37.** $\lim_{x \to -3^{-}} \frac{x^2 + 2x 3}{x^2 + x 6} = \lim_{x \to -3^{-}} \frac{x 1}{x 2} = \frac{4}{5}$
- **41.** $\lim_{x\to 0^-}\left(1+\frac{1}{x}\right)=-\infty$
- **45.** $\lim_{x \to \pi} \frac{\sqrt{x}}{\csc x} = \lim_{x \to \pi} \left(\sqrt{x} \sin x\right) = 0$

53. A limit in which f(x) increases or decreases without bound as *x* approaches *c* is called an infinite limit. ∞ is not a number. Rather, the symbol

$$\lim_{x \to c} f(x) = \infty$$

says how the limit fails to exist.

31. $\lim_{x \to -1^+} \frac{x^2 + 1}{x + 1} = \infty$ $\lim_{x \to -1^-} \frac{x^2 + 1}{x + 1} = -\infty$ Vertical asymptote at x = -1

35.
$$\lim_{x \to 3^+} \frac{x^2}{(x-3)(x+3)} = \infty$$

39.
$$\lim_{x \to 1} \frac{x^2 - x}{(x^2 + 1)(x - 1)} = \lim_{x \to 1} \frac{x}{x^2 + 1} = \frac{1}{2}$$

43.
$$\lim_{x \to 0^+} \frac{2}{\sin x} = \infty$$

- **47.** $\lim_{x \to (1/2)^{-}} x \sec(\pi x) = \infty \text{ and } \lim_{x \to (1/2)^{+}} x \sec(\pi x) = -\infty.$ Therefore, $\lim_{x \to (1/2)} x \sec(\pi x) \text{ does not exist.}$
- **51.** $f(x) = \frac{1}{x^2 25}$ $\lim_{x \to 5^-} f(x) = -\infty$

55. One answer is
$$f(x) = \frac{x-3}{(x-6)(x+2)} = \frac{x-3}{x^2-4x-12}$$

59.
$$S = \frac{k}{1-r}, 0 < |r| < 1$$
. Assume $k \neq 0$.
$$\lim_{r \to 1^{-}} S = \lim_{r \to 1^{-}} \frac{k}{1-r} = \infty \quad (\text{or} -\infty \text{ if } k < 0)$$

61.
$$C = \frac{528x}{100 - x}, 0 \le x < 100$$

(a) C(25) = \$176 million

(b) C(50) = \$528 million

(c) C(75) = \$1584 million

63. (a)
$$r = \frac{2(7)}{\sqrt{625 - 49}} = \frac{7}{12}$$
 ft/sec
(b) $r = \frac{2(15)}{\sqrt{625 - 225}} = \frac{3}{2}$ ft/sec
(c) $\lim_{x \to 25^{-}} \frac{2x}{\sqrt{625 - x^{2}}} = \infty$

(d) $\lim_{x \to 100^{-}} \frac{528}{100 - x} = \infty$ Thus, it is not possible.

x
 1
 0.5
 0.2
 0.1
 0.01
 0.001
 0.0001

 f(x)
 0.1585
 0.0411
 0.0067
 0.0017

$$\approx 0$$
 ≈ 0
 ≈ 0

(b)	x	1	0.5	0.2	0.1	0.01	0.001	0.0001
	f(x)	0.1585	0.0823	0.0333	0.0167	0.0017	≈0	≈ 0

(c)	x	1	0.5	0.2	0.1	0.01	0.001	0.0001
	f(x)	0.1585	0.1646	0.1663	0.1666	0.1667	0.1667	0.1667

(d)

x	1	0.5	0.2	0.1	0.01	0.001	0.0001
f(x)	0.1585	0.3292	0.8317	1.6658	16.67	166.7	1667.0

For $n \ge 3$, $\lim_{x \to 0^+} \frac{x - \sin x}{x^n} = \infty$.

- **67.** (a) Because the circumference of the motor is half that of the saw arbor, the saw makes 1700/2 = 850 revolutions per minute.
 - (c) $2(20 \cot \phi) + 2(10 \cot \phi)$: straight sections. The angle subtended in each circle is

$$2\pi - \left(2\left(\frac{\pi}{2} - \phi\right)\right) = \pi + 2\phi$$

Thus, the length of the belt around the pulleys is

$$20(\pi + 2\phi) + 10(\pi + 2\phi) = 30(\pi + 2\phi).$$

Total length = $60 \cot \phi + 30(\pi + 2\phi)$

Domain:
$$\left(0, \frac{\pi}{2}\right)$$

(b) The direction of rotation is reversed.

ϕ	0.3	0.6	0.9	1.2	1.5
L	306.2	217.9	195.9	189.6	188.5

(e)

(d)

(f)
$$\lim_{\phi \to (\pi/2)^{-}} L = 60\pi \approx 188.5$$

(All the belts are around pulleys.)

(g)
$$\lim_{\phi \to 0^+} L = \infty$$

71. False; let

$$f(x) = \begin{cases} \frac{1}{x}, & x \neq 0\\ 3, & x = 0. \end{cases}$$

The graph of *f* has a vertical asymptote at x = 0, but f(0) = 3.

 $f(x) = \frac{x^2 - 1}{x - 1}$ or

$$g(x) = \frac{x}{x^2 + 1}.$$

69. False; for instance, let

73. Given $\lim_{x\to c} f(x) = \infty$ and $\lim_{x\to c} g(x) = L$:

(2) Product:

If L > 0, then for $\epsilon = L/2 > 0$ there exists $\delta_1 > 0$ such that |g(x) - L| < L/2 whenever $0 < |x - c| < \delta_1$. Thus, L/2 < g(x) < 3L/2. Since $\lim_{x \to c} f(x) = \infty$ then for M > 0, there exists $\delta_2 > 0$ such that f(x) > M(2/L) whenever $|x - c| < \delta_2$. Let δ be the smaller of δ_1 and δ_2 . Then for $0 < |x - c| < \delta$, we have f(x)g(x) > M(2/L)(L/2) = M. Therefore $\lim_{x \to c} f(x)g(x) = \infty$. The proof is similar for L < 0.

(3) Quotient: Let $\epsilon > 0$ be given.

There exists $\delta_1 > 0$ such that $f(x) > 3L/2\epsilon$ whenever $0 < |x - c| < \delta_1$ and there exists $\delta_2 > 0$ such that |g(x) - L| < L/2 whenever $0 < |x - c| < \delta_2$. This inequality gives us L/2 < g(x) < 3L/2. Let δ be the smaller of δ_1 and δ_2 . Then for $0 < |x - c| < \delta$, we have

$$\left|\frac{g(x)}{f(x)}\right| < \frac{3L/2}{3L/2\epsilon} = \epsilon.$$

Therefore, $\lim_{x \to c} \frac{g(x)}{f(x)} = 0.$

75. Given $\lim_{x \to c} \frac{1}{f(x)} = 0.$

Suppose $\lim_{x \to \infty} f(x)$ exists and equals *L*. Then,

$$\lim_{x \to c} \frac{1}{f(x)} = \frac{\lim_{x \to c} 1}{\lim_{x \to c} f(x)} = \frac{1}{L} = 0$$

This is not possible. Thus, $\lim f(x)$ does not exist.