<table>
<thead>
<tr>
<th>Section 1.1</th>
<th>A Preview of Calculus</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1.2</td>
<td>Finding Limits Graphically and Numerically</td>
<td>27</td>
</tr>
<tr>
<td>Section 1.3</td>
<td>Evaluating Limits Analytically</td>
<td>31</td>
</tr>
<tr>
<td>Section 1.4</td>
<td>Continuity and One-Sided Limits</td>
<td>37</td>
</tr>
<tr>
<td>Section 1.5</td>
<td>Infinite Limits</td>
<td>42</td>
</tr>
<tr>
<td>Review Exercises</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Problem Solving</td>
<td></td>
<td>49</td>
</tr>
</tbody>
</table>
CHAPTER 1
Limits and Their Properties

Section 1.1 A Preview of Calculus
Solutions to Odd-Numbered Exercises

1. Precalculus: (20 ft/sec)(15 seconds) = 300 feet

3. Calculus required: slope of tangent line at x = 2 is rate of change, and equals about 0.16.

5. Precalculus: Area = \(\frac{1}{2}bh = \frac{1}{2}(5)(3) = \frac{15}{2} \) sq. units

7. Precalculus: Volume = (2)(4)(3) = 24 cubic units

9. (a)

(b) The graphs of \(y_2 \) are approximations to the tangent line to \(y_1 \) at \(x = 1 \).

(c) The slope is approximately 2. For a better approximation make the list numbers smaller:
\{0.2, 0.1, 0.01, 0.001\}

11. (a) \(D_1 = \sqrt{(5 - 1)^2 + (1 - 5)^2} = \sqrt{16 + 16} = 5.66 \)

(b) \(D_2 = \sqrt{1 + \left(\frac{5}{2}\right)^2} + \sqrt{1 + \left(\frac{5}{2} - \frac{3}{2}\right)^2} + \sqrt{1 + \left(\frac{5}{2} - \frac{1}{2}\right)^2} + \sqrt{1 + \left(\frac{1}{2} - 1\right)^2} \approx 2.693 + 1.302 + 1.083 + 1.031 \approx 6.11 \)

(c) Increase the number of line segments.

Section 1.2 Finding Limits Graphically and Numerically

1.

<table>
<thead>
<tr>
<th>x</th>
<th>1.9</th>
<th>1.99</th>
<th>1.999</th>
<th>2.001</th>
<th>2.01</th>
<th>2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>0.3448</td>
<td>0.3344</td>
<td>0.3334</td>
<td>0.3332</td>
<td>0.3322</td>
<td>0.3226</td>
</tr>
</tbody>
</table>

\[\lim_{x \to 2} \frac{x - 2}{x^2 - x - 2} = 0.3333 \] (Actual limit is \(\frac{1}{2} \))

3.

<table>
<thead>
<tr>
<th>x</th>
<th>-0.1</th>
<th>-0.01</th>
<th>-0.001</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>0.2911</td>
<td>0.289</td>
<td>0.287</td>
<td>0.2887</td>
<td>0.2884</td>
<td>0.2863</td>
</tr>
</tbody>
</table>

\[\lim_{x \to 0} \frac{\sqrt{x + 3} - \sqrt{3}}{x} = 0.2887 \] (Actual limit is \(1/(2\sqrt{3}) \))
5. \[f(x) = \begin{array}{cccccc} x & 2.9 & 2.99 & 2.999 & 3.001 & 3.01 & 3.1 \\ \hline f(x) & -0.0641 & -0.0627 & -0.0625 & -0.0625 & -0.0623 & -0.0610 \\
\end{array} \]

\[\lim_{x \to 3} \frac{1/(x+1) - (1/4)}{x-3} = -0.0625 \quad \text{(Actual limit is \(-\frac{1}{11}\))} \]

7. \[f(x) = \begin{array}{cccccc} x & -0.1 & -0.01 & -0.001 & 0.001 & 0.1 \\ \hline f(x) & 0.9983 & 0.99998 & 1.0000 & 1.0000 & 0.99998 & 0.9983 \\
\end{array} \]

\[\lim_{x \to 0} \frac{\sin x}{x} = 1.0000 \quad \text{(Actual limit is 1.) (Make sure you use radian mode.)} \]

9. \[\lim_{x \to 3} (4 - x) = 1 \]

11. \[\lim_{x \to 2} f(x) = \lim_{x \to 2} (4 - x) = 2 \]

13. \[\lim_{x \to 5} \frac{|x - 5|}{x - 5} \]

does not exist. For values of \(x\) to the left of 5, \(\frac{|x - 5|}{x - 5}\) equals \(-1\), whereas for values of \(x\) to the right of 5, \(\frac{|x - 5|}{x - 5}\) equals 1.

15. \[\lim_{x \to \pi/2} \tan x \]
does not exist since the function increases and decreases without bound as \(x\) approaches \(\pi/2\).

17. \[\lim_{x \to 0} \cos\left(\frac{1}{x}\right) \]
does not exist since the function oscillates between \(-1\) and 1 as \(x\) approaches 0.

19. \[C(t) = 0.75 - 0.50[\{(t - 1)\}] \]

(b) \[C \begin{array}{cccccc} t & 3 & 3.3 & 3.4 & 3.5 & 3.6 & 3.7 & 4 \\ \hline C & 1.75 & 2.25 & 2.25 & 2.25 & 2.25 & 2.25 & 2.25 \\
\end{array} \]

\[\lim_{t \to 3.5} C(t) = 2.25 \]

(c) \[C \begin{array}{cccccc} t & 2 & 2.5 & 2.9 & 3 & 3.1 & 3.5 & 4 \\ \hline C & 1.25 & 1.75 & 1.75 & 2.25 & 2.25 & 2.25 & 2.25 \\
\end{array} \]

\[\lim_{t \to 3} C(t) \]
does not exist. The values of \(C\) jump from 1.75 to 2.25 at \(t = 3\).

21. You need to find \(\delta\) such that \(0 < |x - 1| < \delta\) implies \(|f(x) - 1| = \left| \frac{1}{x} - 1 \right| < 0.1\). That is,

\[-0.1 < \frac{1}{x} - 1 < 0.1 \]

\[1 - 0.1 < \frac{1}{x} < 1 + 0.1 \]

\[\frac{9}{10} < \frac{1}{x} < \frac{11}{10} \]

\[\frac{10}{9} > x > \frac{10}{11} \]

\[\frac{10}{9} - 1 > x - 1 > \frac{10}{11} - 1 \]

\[\frac{1}{9} > x - 1 > -\frac{1}{11} \]

So take \(\delta = \frac{1}{11}\). Then \(0 < |x - 1| < \delta\) implies

\[-\frac{1}{11} < x - 1 < \frac{1}{11} \]

\[-\frac{1}{11} < x - 1 < \frac{1}{9} \]

Using the first series of equivalent inequalities, you obtain

\[|f(x) - 1| = \left| \frac{1}{x} - 1 \right| < \varepsilon < 0.1.\]
23. \(\lim_{x \to 2} (3x + 2) = 8 = L\)
\(|(3x + 2) - 8| < 0.01\)
\(|3x - 6| < 0.01\)
\(3|x - 2| < 0.01\)
\(0 < |x - 2| < \frac{0.01}{3} = 0.0033 = \delta\)
Hence, if \(0 < |x - 2| < \delta\), you have
\(3|x - 2| < 0.01\)
\(|3x - 6| < 0.01\)
\(|(3x + 2) - 8| < 0.01\)
\(|f(x) - L| < 0.01\)

25. \(\lim_{x \to 2} (x^2 - 3) = 1 = L\)
\(|(x^2 - 3) - 1| < 0.01\)
\(|x^2 - 4| < 0.01\)
\(|(x + 2)(x - 2)| < 0.01\)
\(|x + 2||x - 2| < 0.01\)
\(|x + 2| < 0.01\)
\(|x^2 - 4| < 0.01\)
\(|(x^2 - 3) - 1| < 0.01\)
\(|f(x) - L| < 0.01\)

If we assume \(1 < x < 3\), then \(\delta = 0.01/5 = 0.002\).
Hence, if \(0 < |x - 2| < \delta\), you have
\(|x - 2| < 0.002 = \frac{1}{5}(0.01) < \frac{1}{|x + 2|}(0.01)\)
\(|x + 2||x - 2| < 0.01\)
\(|x^2 - 4| < 0.01\)
\(|(x^2 - 3) - 1| < 0.01\)
\(|f(x) - L| < 0.01\)

27. \(\lim_{x \to 2} (x + 3) = 5\)
Given \(\varepsilon > 0:\)
\(|(x + 3) - 5| < \varepsilon\)
\(|x - 2| < \varepsilon = \delta\)
Hence, let \(\delta = \varepsilon\).
Hence, if \(0 < |x - 2| < \delta = \varepsilon\), you have
\(|x - 2| < \varepsilon\)
\(|(x + 3) - 5| < \varepsilon\)
\(|f(x) - L| < \varepsilon\)

29. \(\lim_{x \to -4} \left(\frac{1}{2}x - 1\right) = \frac{1}{2}(-4) - 1 = -3\)
Given \(\varepsilon > 0:\)
\(|\left(\frac{1}{2}x - 1\right) - (-3)| < \varepsilon\)
\(|\frac{1}{2}x + 2| < \varepsilon\)
\(\left|\frac{1}{2}x - (-4)\right| < \varepsilon\)
\(|x - (-4)| < 2\varepsilon\)
Hence, let \(\delta = 2\varepsilon\).
Hence, if \(0 < |x - (-4)| < \delta = 2\varepsilon\), you have
\(|x - (-4)| < 2\varepsilon\)
\(|\frac{1}{2}x + 2| < \varepsilon\)
\(|\left(\frac{1}{2}x - 1\right) + 3| < \varepsilon\)
\(|f(x) - L| < \varepsilon\)

31. \(\lim_{x \to 6} 3 = 3\)
Given \(\varepsilon > 0:\)
\(|3 - 3| < \varepsilon\)
\(0 < \varepsilon\)
Hence, any \(\delta > 0\) will work.
Hence, for any \(\delta > 0\), you have
\(|3 - 3| < \varepsilon\)
\(|f(x) - L| < \varepsilon\)

33. \(\lim_{x \to 0} \sqrt{x} = 0\)
Given \(\varepsilon > 0:\)
\(|\sqrt{x} - 0| < \varepsilon\)
\(|\sqrt{x}| < \varepsilon\)
\(|x| < \varepsilon^3 = \delta\)
Hence, let \(\delta = \varepsilon^3\).
Hence for \(0 < |x - 0| < \delta = \varepsilon^3\), you have
\(|x| < \varepsilon^3\)
\(|\sqrt{x}| < \varepsilon\)
\(|\sqrt{x} - 0| < \varepsilon\)
\(|f(x) - L| < \varepsilon\)
35. \[\lim_{x \to -2} |x - 2| = |(-2) - 2| = 4 \]
 Given \(\varepsilon > 0 \):
 \[||x - 2| - 4| < \varepsilon \]
 \[|-(x - 2) - 4| < \varepsilon \quad (x - 2 < 0) \]
 \[|-(x + 2)| < \varepsilon \]
 \[|-(x - 2) - 4| < \varepsilon \quad (because x - 20) \]
 \[|f(x) - L| < \varepsilon \]
 Hence, \(\delta = \varepsilon \).
 Hence for \(0 < |x - (-2)| < \delta \) you have
 \[|x + 2| < \varepsilon \]
 \[|-(x + 2)| < \varepsilon \]
 \[|-(x - 2) - 4| < \varepsilon \]
 \[||x - 2| - 4| < \varepsilon \quad (because x - 20) \]
 \[|f(x) - L| < \varepsilon \]

39. \(f(x) = \frac{\sqrt{x + 5} - 3}{x - 4} \)
\[\lim_{x \to 4} f(x) = \frac{1}{6} \]

41. \(f(x) = \frac{x - 9}{\sqrt{x} - 3} \)
\[\lim_{x \to 9} f(x) = 6 \]

The domain is \([-5, 4) \cup (4, \infty)\).
The graphing utility does not show the hole at \((4, \frac{1}{6})\).

43. \(\lim_{x \to 8} f(x) = 25 \) means that the values of \(f \) approach 25 as \(x \) gets closer and closer to 8.

45. (i) The values of \(f \) approach different numbers as \(x \) approaches \(c \) from different sides of \(c \):

(ii) The values of \(f \) increase without bound as \(x \) approaches \(c \):

(iii) The values of \(f \) oscillate between two fixed numbers as \(x \) approaches \(c \):

47. \(f(x) = (1 + x)^{1/x} \)
\[\lim_{x \to 0} (1 + x)^{1/x} = e \approx 2.71828 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.1</td>
<td>2.867972</td>
</tr>
<tr>
<td>-0.01</td>
<td>2.731999</td>
</tr>
<tr>
<td>-0.001</td>
<td>2.719642</td>
</tr>
<tr>
<td>-0.0001</td>
<td>2.718418</td>
</tr>
<tr>
<td>-0.00001</td>
<td>2.718295</td>
</tr>
<tr>
<td>-0.000001</td>
<td>2.718283</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.593742</td>
</tr>
<tr>
<td>0.01</td>
<td>2.704814</td>
</tr>
<tr>
<td>0.001</td>
<td>2.716942</td>
</tr>
<tr>
<td>0.0001</td>
<td>2.718416</td>
</tr>
<tr>
<td>0.00001</td>
<td>2.718268</td>
</tr>
<tr>
<td>0.000001</td>
<td>2.718280</td>
</tr>
</tbody>
</table>
49. False; \(f(x) = \frac{\sin x}{x} \) is undefined when \(x = 0 \).
 From Exercise 7, we have
 \[
 \lim_{{x \to 0}} \frac{\sin x}{x} = 1.
 \]
 \[
 f(x) = \begin{cases}
 x^2 - 4x, & x \neq 4 \\
 10, & x = 4
 \end{cases}
 \]
 \[
 f(4) = 10
 \]
 \[
 \lim_{{x \to 4}} (x^2 - 4x) = 0 \neq 10
 \]

51. False; let
 \[
 \lim_{{x \to \pi/2}} \sin x = 1
 \]
 \[
 3 \leq \sin 2 \leq 10
 \]
 \[
 53. Answers will vary.
 \]

55. If \(\lim_{{x \to a}} f(x) = L_1 \) and \(\lim_{{x \to a}} f(x) = L_2 \), then for every \(\epsilon > 0 \), there exists \(\delta_1 > 0 \) and \(\delta_2 > 0 \) such that \(|x - c| < \delta_1 \Rightarrow |f(x) - L_1| < \epsilon \) and \(|x - c| < \delta_2 \Rightarrow |f(x) - L_2| < \epsilon \). Let \(\delta \) equal the smaller of \(\delta_1 \) and \(\delta_2 \). Then for \(|x - c| < \delta \), we have
 \[
 |L_1 - L_2| = |L_1 - f(x) + f(x) - L_2| \leq |L_1 - f(x)| + |f(x) - L_2| < \epsilon + \epsilon.
 \]

Therefore, \(|L_1 - L_2| < 2\epsilon \). Since \(\epsilon > 0 \) is arbitrary, it follows that \(L_1 = L_2 \).

57. \(\lim_{{x \to c}} f(x) = L \) means that for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that if
 \[
 0 < |x - c| < \delta,
 \]
 then
 \[
 |(f(x) - L) - 0| < \epsilon.
 \]
 This means the same as \(|f(x) - L| < \epsilon \) when
 \[
 0 < |x - c| < \delta.
 \]
 Thus, \(\lim_{{x \to c}} f(x) = L \).

Section 1.3 Evaluating Limits Analytically

1. \(h(x) = x^2 - 5x \)
 \(a) \lim_{{x \to 5}} h(x) = 0 \)
 \(b) \lim_{{x \to -1}} h(x) = 6 \)

3. \(f(x) = x \cos x \)
 \(a) \lim_{{x \to 0}} f(x) = 0 \)
 \(b) \lim_{{x \to -\pi/3}} f(x) \approx 0.524 \)

5. \(\lim_{{x \to 2}} x^2 = 4^2 = 16 \)

7. \(\lim_{{x \to 0}} (2x - 1) = 2(0) - 1 = -1 \)

9. \(\lim_{{x \to -3}} (x^2 + 3x) = (-3)^2 + 3(-3) = 9 - 9 = 0 \)

11. \(\lim_{{x \to -3}} (2x^2 + 4x + 1) = 2(-3)^2 + 4(-3) + 1 = 18 - 12 + 1 = 7 \)

13. \(\lim_{{x \to 2}} \frac{1}{x} = \frac{1}{2} \)

15. \(\lim_{{x \to 1}} \frac{x - 3}{x^2 + 4} = \frac{1 - 3}{1^2 + 4} = \frac{-2}{5} = -\frac{2}{5} \)

17. \(\lim_{{x \to 7}} \frac{5x}{\sqrt{x} + 2} = \frac{5(7)}{\sqrt{7} + 2} = \frac{35}{\sqrt{7} + 2} = \frac{35}{3} \)

19. \(\lim_{{x \to 3}} \sqrt{x + 1} = \sqrt{3 + 1} = 2 \)
21. \(\lim_{x \to -4} (x + 3)^2 = (-4 + 3)^2 = 1 \)

23. (a) \(\lim_{x \to 1} f(x) = 5 - 1 = 4 \)
 (b) \(\lim_{x \to -4} g(x) = 4^3 = 64 \)
 (c) \(\lim_{x \to 1} g(f(x)) = g(f(1)) = g(4) = 64 \)

25. (a) \(\lim_{x \to 4} f(x) = 4 - 1 = 3 \)
 (b) \(\lim_{x \to 3} g(x) = \sqrt{3 + 1} = 2 \)
 (c) \(\lim_{x \to 1} g(f(x)) = g(3) = 2 \)

27. \(\lim_{x \to \pi/2} \sin x = \sin \frac{\pi}{2} = 1 \)

29. \(\lim_{x \to 2} \cos \frac{\pi x}{3} = \cos \frac{\pi \cdot 2}{3} = -\frac{1}{2} \)

33. \(\lim_{x \to 5\pi/6} \sin x = \sin \frac{5\pi}{6} = \frac{1}{2} \)

37. (a) \(\lim_{x \to -3} [5g(x)] = 5 \lim_{x \to -3} g(x) = 5(3) = 15 \)
 (b) \(\lim_{x \to -3} [f(x) + g(x)] = \lim_{x \to -3} f(x) + \lim_{x \to -3} g(x) = 2 + 3 = 5 \)
 (c) \(\lim_{x \to -3} [f(x)g(x)] = \lim_{x \to -3} f(x) \lim_{x \to -3} g(x) = (2)(3) = 6 \)
 (d) \(\lim_{x \to -3} \frac{f(x)}{g(x)} = \lim_{x \to -3} \frac{f(x)}{\lim_{x \to -3} g(x)} = \frac{2}{3} \)

39. (a) \(\lim_{x \to 3} [f(x)]^3 = \left[\lim_{x \to 3} f(x) \right]^3 = (4)^3 = 64 \)
 (b) \(\lim_{x \to 3} \sqrt{f(x)} = \sqrt{\lim_{x \to 3} f(x)} = \sqrt{4} = 2 \)
 (c) \(\lim_{x \to 3} [3f(x)] = 3 \lim_{x \to 3} f(x) = 3(4) = 12 \)
 (d) \(\lim_{x \to 3} [f(x)]^{1/2} = \left[\lim_{x \to 3} f(x) \right]^{1/2} = (4)^{1/2} = 2 \)

41. \(f(x) = -2x + 1 \) and \(g(x) = \frac{-2x^2 + x}{x} \) agree except at \(x = 0 \).
 (a) \(\lim_{x \to 0} g(x) = \lim_{x \to 0} f(x) = 1 \)
 (b) \(\lim_{x \to -1} g(x) = \lim_{x \to -1} f(x) = 3 \)

45. \(f(x) = \frac{x^2 - 1}{x + 1} \) and \(g(x) = x - 1 \) agree except at \(x = -1 \).
 \[\lim_{x \to -1} f(x) = \lim_{x \to -1} g(x) = -2 \]

49. \(\lim_{x \to 5} \frac{x - 5}{x^2 - 25} = \lim_{x \to 5} \frac{x - 5}{(x + 5)(x - 5)} = \lim_{x \to 5} \frac{1}{x + 5} = \frac{1}{10} \)

51. \(\lim_{x \to -3} \frac{x^2 + x - 6}{x^2 - 9} = \lim_{x \to -3} \frac{(x + 3)(x - 2)}{(x + 3)(x - 3)} = \lim_{x \to -3} \frac{x - 2}{x - 3} = \frac{-5}{6} = \frac{5}{6} \)
53. \[
\lim_{x \to 0} \frac{\sqrt{x + 5} - \sqrt{5}}{x} = \lim_{x \to 0} \frac{\sqrt{x + 5} - \sqrt{5}}{x} \cdot \frac{\sqrt{x + 5} + \sqrt{5}}{\sqrt{x + 5} + \sqrt{5}} = \lim_{x \to 0} \frac{(x + 5) - 5}{x(x + 5 + 5)} = \lim_{x \to 0} \frac{1}{2\sqrt{5}} = \frac{\sqrt{5}}{10}
\]

55. \[
\lim_{x \to 4} \frac{\sqrt{x + 5} - 3}{x - 4} = \lim_{x \to 4} \frac{\sqrt{x + 5} - 3}{x - 4} \cdot \frac{\sqrt{x + 5} + 3}{\sqrt{x + 5} + 3} = \lim_{x \to 4} \frac{(x + 5) - 9}{(x - 4)(\sqrt{x + 5} + 3)} = \lim_{x \to 4} \frac{1}{\sqrt{x + 5} + 3} = \frac{1}{\sqrt{9} + 3} = \frac{1}{6}
\]

57. \[
\lim_{x \to 0} \frac{1}{2 + x} - \frac{1}{2} = \lim_{x \to 0} \frac{2 - (2 + x)}{2(2 + x)} = \lim_{x \to 0} \frac{-1}{2(2 + x)} = -\frac{1}{4}
\]

59. \[
\lim_{\Delta x \to 0} \frac{2(x + \Delta x) - 2x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2x + 2\Delta x - 2x}{\Delta x} = \lim_{\Delta x \to 0} 2 = 2
\]

61. \[
\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - 2(x + \Delta x) + 1 - (x^2 - 2x + 1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 - 2x - 2\Delta x + 1 - x^2 + 2x - 1}{\Delta x} = \lim_{\Delta x \to 0} (2x + \Delta x - 2) = 2x - 2
\]

63. \[
\lim_{x \to 0} \frac{\sqrt{x + 2} - \sqrt{2}}{x} = 0.354
\]

<table>
<thead>
<tr>
<th>x</th>
<th>-0.1</th>
<th>-0.01</th>
<th>-0.001</th>
<th>0</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>0.358</td>
<td>0.354</td>
<td>0.345</td>
<td>?</td>
<td>0.354</td>
<td>0.353</td>
<td>0.349</td>
</tr>
</tbody>
</table>

Analytically, \[
\lim_{x \to 0} \frac{\sqrt{x + 2} - \sqrt{2}}{x} = \lim_{x \to 0} \frac{\sqrt{x + 2} - \sqrt{2}}{x} \cdot \frac{\sqrt{x + 2} + \sqrt{2}}{\sqrt{x + 2} + \sqrt{2}} = \lim_{x \to 0} \frac{x + 2 - 2}{x(x + 2 + \sqrt{2})} = \lim_{x \to 0} \frac{1}{\sqrt{x + 2} + \sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4} \approx 0.354
\]

65. \[
\lim_{x \to 0} \frac{1}{2 + x} - \frac{1}{2} = -\frac{1}{4}
\]

<table>
<thead>
<tr>
<th>x</th>
<th>-0.1</th>
<th>-0.01</th>
<th>-0.001</th>
<th>0</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>-0.263</td>
<td>-0.251</td>
<td>-0.250</td>
<td>?</td>
<td>-0.250</td>
<td>-0.249</td>
<td>-0.238</td>
</tr>
</tbody>
</table>

Analytically, \[
\lim_{x \to 0} \frac{1}{2 + x} - \frac{1}{2} = \lim_{x \to 0} \frac{2 - (2 + x)}{2(2 + x)} \cdot \frac{1}{x} = \lim_{x \to 0} \frac{-x}{2(2 + x)} \cdot \frac{1}{x} = \lim_{x \to 0} \frac{-1}{2(2 + x)} = -\frac{1}{4}
\]
67. \[\lim_{x \to 0} \frac{\sin x}{5x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \cdot \frac{1}{5} \right) = \left(\frac{1}{5} \right) = \frac{1}{5} \]

69. \[\lim_{x \to 0} \frac{\sin(x(1 - \cos x))}{2x^2} = \lim_{x \to 0} \left(\frac{1}{2} \cdot \frac{\sin x}{x} \cdot \frac{1 - \cos x}{x} \right) = \frac{1}{2}(1)(0) = 0 \]

71. \[\lim_{x \to 0} \frac{\sin^2 x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \cdot \sin x \right) = (1) \sin 0 = 0 \]

73. \[\lim_{h \to 0} \frac{(1 - \cos h)^2}{h} = \lim_{h \to 0} \frac{1 - \cos h}{h} \cdot (1 - \cos h) = (0)(0) = 0 \]

75. \[\lim_{x \to \pi/2} \frac{\cos x}{\cot x} = \lim_{x \to \pi/2} \sin x = 1 \]

77. \[\lim_{t \to 0} \frac{\sin 3t}{2t} = \lim_{t \to 0} \left(\frac{\sin 3t}{3t} \right) \left(\frac{3}{2} \right) = (1) \left(\frac{3}{2} \right) = \frac{3}{2} \]

79. \[f(t) = \frac{\sin 3t}{t} \]

<table>
<thead>
<tr>
<th>(t)</th>
<th>-0.1</th>
<th>-0.01</th>
<th>-0.001</th>
<th>0</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>2.96</td>
<td>2.9996</td>
<td>3</td>
<td>?</td>
<td>3</td>
<td>2.9996</td>
<td>2.96</td>
</tr>
</tbody>
</table>

Analytically, \(\lim_{t \to 0} \frac{\sin 3t}{t} = \lim_{t \to 0} \left(\frac{\sin 3t}{3t} \right) = 3(1) = 3 \).

81. \[f(x) = \frac{\sin^2 x}{x} \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>-0.1</th>
<th>-0.01</th>
<th>-0.001</th>
<th>0</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-0.099998</td>
<td>-0.01</td>
<td>-0.001</td>
<td>?</td>
<td>0.001</td>
<td>0.01</td>
<td>0.099998</td>
</tr>
</tbody>
</table>

Analytically, \(\lim_{x \to 0} \frac{\sin^2 x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 0(1) = 0 \).

83. \[\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{2(x + h) + 3 - (2x + 3)}{h} = \lim_{h \to 0} \frac{2x + 2h + 3 - 2x - 3}{h} = \lim_{h \to 0} \frac{2h}{h} = 2 \]

85. \[\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{4 + \frac{4}{x + h} - 4}{h} = \lim_{h \to 0} \frac{4x - 4(x + h)}{(x + h)h} = \lim_{h \to 0} \frac{-4}{(x + h)x} = \frac{-4}{x^2} \]

87. \(\lim_{x \to 0} (4 - x^2) \leq \lim_{x \to 0} f(x) \leq \lim_{x \to 0} (4 + x^2) \)

\[4 \leq \lim_{x \to 0} f(x) \leq 4 \]

Therefore, \(\lim_{x \to 0} f(x) = 4 \).

89. \[f(x) = x \cos x \]

\[\lim_{x \to 0} (x \cos x) = 0 \]
91. \(f(x) = |x| \sin x \)

\[
\lim_{x \to 0} |x| \sin x = 0
\]

93. \(f(x) = x \sin \frac{1}{x} \)

\[
\lim_{x \to 0} \left(x \sin \frac{1}{x} \right) = 0
\]

95. We say that two functions \(f \) and \(g \) agree at all but one point (on an open interval) if \(f(x) = g(x) \) for all \(x \) in the interval except for \(x = c \), where \(c \) is in the interval.

97. An indeterminant form is obtained when evaluating a limit using direct substitution produces a meaningless fractional expression such as \(0/0 \). That is,

\[
\lim_{x \to c} \frac{f(x)}{g(x)}
\]

for which \(\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0 \)

99. \(f(x) = x \), \(g(x) = \sin x \), \(h(x) = \frac{\sin x}{x} \)

When you are “close to” \(0 \) the magnitude of \(f \) is approximately equal to the magnitude of \(g \).

Thus, \(\frac{|g|}{|f|} = 1 \) when \(x \) is “close to” \(0 \).

101. \(s(t) = -16t^2 + 1000 \)

\[
\lim_{t \to 5} \frac{s(5) - s(t)}{5 - t} = \lim_{t \to 5} \frac{600 - (-16t^2 + 1000)}{5 - t} = \lim_{t \to 5} \frac{16(t + 5)(t - 5)}{-(t - 5)} = \lim_{t \to 5} -16(t + 5) = -160 \text{ ft/sec.}
\]

Speed = 160 ft/sec

103. \(s(t) = -4.9t^2 + 150 \)

\[
\lim_{t \to 3} \frac{s(3) - s(t)}{3 - t} = \lim_{t \to 3} \frac{-4.9(3^2) + 150 - (-4.9t^2 + 150)}{3 - t} = \lim_{t \to 3} \frac{-4.9(9 - t^2)}{3 - t}
\]

\[
= \lim_{t \to 3} \frac{-4.9(3 - t)(3 + t)}{3 - t} = \lim_{t \to 3} -4.9(3 + t) = -29.4 \text{ m/sec}
\]

105. Let \(f(x) = 1/x \) and \(g(x) = -1/x \). \(\lim_{x \to 0} f(x) \) and \(\lim_{x \to 0} g(x) \) do not exist.

\[
\lim_{x \to 0} [f(x) + g(x)] = \lim_{x \to 0} \left[\frac{1}{x} + \left(-\frac{1}{x} \right) \right] = \lim_{x \to 0} [0] = 0
\]

107. Given \(f(x) = b \), show that for every \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that \(|f(x) - b| < \epsilon \) whenever \(|x - c| < \delta \). Since \(|f(x) - b| = |b - b| = 0 < \epsilon \) for any \(\epsilon > 0 \), then any value of \(\delta > 0 \) will work.

109. If \(b = 0 \), then the property is true because both sides are equal to 0. If \(b \neq 0 \), let \(\epsilon > 0 \) be given. Since \(\lim_{x \to c} f(x) = L \), there exists \(\delta > 0 \) such that \(|f(x) - L| < \epsilon/|b| \) whenever \(0 < |x - c| < \delta \). Hence, wherever \(0 < |x - c| < \delta \), we have

\[
|b||f(x) - L| < \epsilon \quad \text{or} \quad |bf(x) - bL| < \epsilon
\]

which implies that \(\lim_{x \to c} [bf(x)] = bL \).
111. \[M|f(x)| \leq f(x)g(x) \leq M|f(x)| \]
\[
\lim_{x \to c} (-M|f(x)|) \leq \lim_{x \to c} f(x)g(x) \leq \lim_{x \to c} (M|f(x)|)
\]
\[-M(0) \leq \lim_{x \to c} f(x)g(x) \leq M(0)\]
\[0 \leq \lim_{x \to c} f(x)g(x) \leq 0\]
Therefore, \(\lim_{x \to c} f(x)g(x) = 0 \).

115. True.

117. False. The limit does not exist.

119. Let
\[
f(x) = \begin{cases} 4, & \text{if } x \geq 0 \\ -4, & \text{if } x < 0 \end{cases}
\]
\[\lim_{x \to 0} |f(x)| = \lim_{x \to 0} 4 = 4.
\]
\[\lim_{x \to 0} f(x)\] does not exist since for \(x < 0 \), \(f(x) = -4 \) and for \(x \geq 0 \), \(f(x) = 4 \).

121. \(f(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ 1, & \text{if } x \text{ is irrational} \end{cases} \)
\[g(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ x, & \text{if } x \text{ is irrational} \end{cases} \]
\[\lim_{x \to 0} f(x)\] does not exist.
No matter how “close to” 0 \(x \) is, there are still an infinite number of rational and irrational numbers so that \(\lim_{x \to 0} f(x) \) does not exist.
\[\lim_{x \to 0} g(x) = 0.\]
When \(x \) is “close to” 0, both parts of the function are “close to” 0.

123. (a) \[\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \frac{1 + \cos x}{1 + \cos x} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos x)} = \lim_{x \to 0} \sin^2 x \cdot \frac{1}{1 + \cos x} = (1) \left(\frac{1}{2} \right) = \frac{1}{2}\]
(b) Thus, \(\frac{1 - \cos x}{x^2} \approx \frac{1}{2} \Rightarrow 1 - \cos x \approx \frac{1}{2} x^2 \)
\[\Rightarrow \cos x \approx 1 - \frac{1}{2} x^2 \text{ for } x = 0.\]
(c) \(\cos(0.1) \approx 1 - \frac{1}{2}(0.1)^2 = 0.995\)
(d) \(\cos(0.1) \approx 0.9950, \) which agrees with part (c).
Section 1.4 Continuity and One-Sided Limits

1. (a) \(\lim_{x \to 3} f(x) = 1 \)
 (b) \(\lim_{x \to 3} f(x) = 1 \)
 (c) \(\lim_{x \to 3} f(x) = 1 \)

 The function is continuous at \(x = 3 \).

3. (a) \(\lim_{x \to 0} f(x) = 0 \)
 (b) \(\lim_{x \to 0} f(x) = 0 \)
 (c) \(\lim_{x \to 0} f(x) = 0 \)

 The function is NOT continuous at \(x = 3 \).

5. (a) \(\lim_{x \to 3} f(x) = 2 \)
 (b) \(\lim_{x \to 4} f(x) = -2 \)
 (c) \(\lim_{x \to 4} f(x) \) does not exist

 The function is NOT continuous at \(x = 4 \).

7. \(\lim_{x \to 3} \frac{x - 5}{x^2 - 25} = \lim_{x \to 3} \frac{1}{x + 5} = \frac{1}{10} \)

9. \(\lim_{x \to -3} \frac{x}{\sqrt{x^2 - 9}} \) does not exist because \(\frac{x}{\sqrt{x^2 - 9}} \) grows without bound as \(x \to -3^- \).

11. \(\lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{-x}{x} = -1 \).

13. \(\frac{1}{\Delta x} \frac{x + \Delta x - x}{x(x + \Delta x)} \), \(\lim_{\Delta x \to 0} -\Delta x \frac{-1}{x(x + 0)} = -\frac{1}{x^2} \)

15. \(\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x + 2}{2} = \frac{5}{2} \)

17. \(\lim_{x \to 1} f(x) = \lim_{x \to 1} (x + 1) = 2 \)
 \(\lim_{x \to 1} f(x) = \lim_{x \to 1} (x^3 + 1) = 2 \)
 \(\lim_{x \to 1} f(x) = 2 \)

19. \(\lim_{x \to \pi} \cot x \) does not exist since \(\lim_{x \to \pi^-} \cot x \) and \(\lim_{x \to \pi^+} \cot x \) do not exist.

21. \(\lim_{x \to 3} (3[x] - 5) = 3(3) - 5 = 4 \)
 \(\lim_{x \to 4} (3[x] - 5) = 3(4) - 5 = 7 \)
 \(\lim_{x \to 0} (3[x] - 5) = 3(0) - 5 = -5 \)

23. \(\lim_{x \to 3} (2 - \lfloor -x \rfloor) \) does not exist because \(\lim_{x \to 3} (2 - \lfloor -x \rfloor) = 2 - (-3) = 5 \)
 and \(\lim_{x \to 3} (2 - \lfloor -x \rfloor) = 2 - (-4) = 6 \).

25. \(f(x) = \frac{1}{x^2 - 4} \) has discontinuities at \(x = -2 \) and \(x = 2 \) since \(f(-2) \) and \(f(2) \) are not defined.

27. \(f(x) = \frac{\|x\|}{2} + x \) has discontinuities at each integer \(k \) since \(\lim_{x \to k^+} f(x) \neq \lim_{x \to k^-} f(x) \).

29. \(g(x) = \sqrt{25 - x^2} \) is continuous on \([-5, 5]\).

31. \(\lim_{x \to 0} f(x) = 3 = \lim_{x \to 0} f(x) \)
 \(f \) is continuous on \([-1, 4] \).

33. \(f(x) = x^2 - 2x + 1 \) is continuous for all real \(x \).
35. \(f(x) = 3x - \cos x \) is continuous for all real \(x \).

37. \(f(x) = \frac{x}{x^2 - x} \) is not continuous at \(x = 0, 1 \). Since
\[
\frac{x}{x^2 - x} = \frac{1}{x-1} \quad \text{for} \ x \neq 0, \ x = 0 \text{is a removable discontinuity, whereas} \ x = 1 \text{is a nonremovable discontinuity.}
\]

39. \(f(x) = \frac{x}{x^2 + 1} \) is continuous for all real \(x \).

41. \(f(x) = \frac{x + 2}{(x + 2)(x - 5)} \) has a nonremovable discontinuity at \(x = 5 \) since \(\lim_{x \to 5} f(x) \) does not exist, and has a removable discontinuity at \(x = -2 \) since
\[
\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{1}{x - 5} = -\frac{1}{7}.
\]

43. \(f(x) = \frac{|x + 2|}{x + 2} \) has a nonremovable discontinuity at \(x = -2 \) since \(\lim_{x \to -2} f(x) \) does not exist.

45. \(f(x) = \begin{cases} x, & x \leq 1 \\ x^2, & x > 1 \end{cases} \) has a possible discontinuity at \(x = 1 \).

1. \(f(1) = 1 \)

2. \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} x^2 = 1 \) \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x = 1 \) \(\lim_{x \to 1} f(x) = 1 \)

3. \(f(1) = \lim_{x \to 1} f(x) \)

\(f \) is continuous at \(x = 1 \), therefore, \(f \) is continuous for all real \(x \).

47. \(f(x) = \begin{cases} \frac{x + 1}{2} + 1, & x \leq 2 \\ \frac{3 - x}{x}, & x > 2 \end{cases} \) has a possible discontinuity at \(x = 2 \).

1. \(f(2) = \frac{2}{2} + 1 = 2 \)

\[
\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \left(\frac{x + 1}{2} \right) = 2
\]

2. \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{3 - x}{x} = 1 \) \(\lim_{x \to 2} f(x) \) does not exist.

Therefore, \(f \) has a nonremovable discontinuity at \(x = 2 \).

49. \(f(x) = \begin{cases} \tan \frac{\pi x}{4}, & |x| < 1 \\ \frac{\pi x}{4}, & |x| \geq 1 \end{cases} \) has possible discontinuities at \(x = -1, x = 1 \).

1. \(f(-1) = -1 \) \(f(1) = 1 \)

2. \(\lim_{x \to -1} f(x) = -1 \) \(\lim_{x \to 1} f(x) = 1 \)

3. \(f(-1) = \lim_{x \to -1} f(x) \) \(f(1) = \lim_{x \to -1} f(x) \)

\(f \) is continuous at \(x = \pm 1 \), therefore, \(f \) is continuous for all real \(x \).
51. \(f(x) = \csc 2x \) has nonremovable discontinuities at integer multiples of \(\pi/2 \).

55. \(\lim_{x \to 0^+} f(x) = 0 \)
\(\lim_{x \to 0^-} f(x) = 0 \)
\(f \) is not continuous at \(x = -2 \).

53. \(f(x) = \lceil x - 1 \rceil \) has nonremovable discontinuities at each integer \(k \).

57. \(f(2) = 8 \)
Find \(a \) so that \(\lim_{x \to 2^-} ax^2 = 8 \Rightarrow a = \frac{8}{2^2} = 2. \)

59. Find \(a \) and \(b \) such that \(\lim_{x \to 1^+} (ax + b) = -a + b = 2 \) and \(\lim_{x \to 3^-} (ax + b) = 3a + b = -2. \)
\[
\begin{align*}
a - b &= -2 \\
(+) 3a + b &= -2 \\
4a &= -4 \\
a &= -1 \\
b &= 2 + (-1) = 1 \end{align*}
\]

61. \(f(g(x)) = (x - 1)^2 \)
Continuous for all real \(x \).

65. \(y = \lfloor x \rfloor - x \)
Nonremovable discontinuity at each integer

63. \(f(g(x)) = \frac{1}{(x^2 + 5) - 6} = \frac{1}{x^2 - 1} \)
Nonremovable discontinuities at \(x = \pm 1 \)

67. \(f(x) = \begin{cases}
2x - 4, & x \leq 3 \\
\frac{x^2}{x^2 - 3}, & x > 3
\end{cases} \)
Nonremovable discontinuity at \(x = 3 \)

69. \(f(x) = \frac{x}{x^2 + 1} \)
Continuous on \((-\infty, \infty) \)

71. \(f(x) = \sec \frac{\pi x}{4} \)
Continuous on:
\[\ldots \ldots (-6, -2), (-2, 2), (2, 6), (6, 10), \ldots \ldots \]

75. \(f(x) = \frac{1}{100} x^4 - x^3 + 3 \) is continuous on \([1, 2]\).
\(f(1) = \frac{13}{10} \) and \(f(2) = -4. \) By the Intermediate Value Theorem, \(f(c) = 0 \) for at least one value of \(c \) between 1 and 2.

The graph appears to be continuous on the interval \([-4, 4]\). Since \(f(0) \) is not defined, we know that \(f \) has a discontinuity at \(x = 0 \). This discontinuity is removable so it does not show up on the graph.
77. \(f(x) = x^2 - 2 - \cos x \) is continuous on \([0, \pi]\).

\[f(0) = -3 \text{ and } f(\pi) = \pi^2 - 1 > 0. \]

By the Intermediate Value Theorem, \(f(c) = 0 \) for the least one value of \(c \) between 0 and \(\pi \).

81. \(g(t) = 2 \cos t - 3t \)

\(g \) is continuous on \([0, 1]\).

\[g(0) = 2 > 0 \text{ and } g(1) = -1.9 < 0. \]

By the Intermediate Value Theorem, \(g(t) = 0 \) for at least one value \(t \) between 0 and 1. Using a graphing utility, we find that \(t = 0.5636 \).

83. \(f(x) = x^2 + x - 1 \)

\(f \) is continuous on \([0, 5]\).

\[f(0) = -1 \text{ and } f(5) = 29 \]

\(-1 < 11 < 29 \)

The Intermediate Value Theorem applies.

\[x^2 + x - 1 = 11 \]

\[x^2 + x - 12 = 0 \]

\[(x + 4)(x - 3) = 0 \]

\[x = -4 \text{ or } x = 3 \]

\[c = 3 \text{ (} x = -4 \text{ is not in the interval.)} \]

Thus, \(f(3) = 11 \).

87. (a) The limit does not exist at \(x = c \).

(b) The function is not defined at \(x = c \).

(c) The limit exists at \(x = c \), but it is not equal to the value of the function at \(x = c \).

(d) The limit does not exist at \(x = c \).

89. \begin{align*}
\text{The function is not continuous at } x = 3 \text{ because } \\
\lim_{x \to 3^-} f(x) = 1 \neq 0 = \lim_{x \to 3^+} f(x).
\end{align*}

91. The functions agree for integer values of \(x \):

\[g(x) = 3 - \lfloor -x \rfloor = 3 \quad \text{and} \quad f(x) = 3 + \lfloor x \rfloor = 3 + x \quad \text{for } x \text{ an integer} \]

However, for non-integer values of \(x \), the functions differ by 1.

\[f(x) = 3 + \lfloor x \rfloor = g(x) - 1 = 2 - \lfloor -x \rfloor. \]

For example, \(f(\frac{3}{2}) = 3 + 0 = 3, g(\frac{3}{2}) = 3 - (-1) = 4. \)
93. \(N(t) = 25 \left(\lfloor \frac{t + 2}{2} \rfloor - t \right) \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>1</th>
<th>1.8</th>
<th>2</th>
<th>3</th>
<th>3.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(t))</td>
<td>50</td>
<td>25</td>
<td>5</td>
<td>50</td>
<td>25</td>
<td>5</td>
</tr>
</tbody>
</table>

Discontinuous at every positive even integer. The company replenishes its inventory every two months.

95. Let \(V = \frac{4}{3} \pi r^3 \) be the volume of a sphere of radius \(r \)

\[
V(1) = \frac{4}{3} \pi \approx 4.19 \\
V(5) = \frac{4}{3} \pi (5^3) \approx 523.6
\]

Since \(4.19 < 275 < 523.6 \), the Intermediate Value Theorem implies that there is at least one value \(r \) between 1 and 5 such that \(V(r) = 275 \). (In fact, \(r \approx 4.0341 \).)

97. Let \(c \) be any real number. Then \(\lim_{x \to c} f(x) \) does not exist since there are both rational and irrational numbers arbitrarily close to \(c \). Therefore, \(f \) is not continuous at \(c \).

99. \(\text{sgn}(x) = \begin{cases}
-1, & \text{if } x < 0 \\
0, & \text{if } x = 0 \\
1, & \text{if } x > 0
\end{cases} \)

(a) \(\lim_{x \to 0^-} \text{sgn}(x) = -1 \)
(b) \(\lim_{x \to 0^+} \text{sgn}(x) = 1 \)
(c) \(\lim_{x \to 0} \text{sgn}(x) \) does not exist.

101. True; if \(f(x) = g(x) \), \(x \neq c \), then \(\lim_{x \to c} f(x) = \lim_{x \to c} g(x) \) and at least one of these limits (if they exist) does not equal the corresponding function at \(x = c \).

103. False; \(f(1) \) is not defined and \(\lim_{x \to 1} f(x) \) does not exist.

105. (a) \(f(x) = \begin{cases}
0 & \text{if } 0 \leq x < b \\
b & \text{if } b \leq x \leq 2b
\end{cases} \)

(b) \(g(x) = \begin{cases}
\frac{x}{2} & \text{if } 0 \leq x \leq b \\
b - \frac{x}{2} & \text{if } b \leq x \leq 2b
\end{cases} \)

Continuous on \([0, 2b]\).
107. \(f(x) = \frac{\sqrt{x + c^2} - c}{x} \), \(c > 0 \)

Domain: \(x + c^2 \geq 0 \implies x \geq -c^2 \) and \(x \neq 0 \), \([-c^2, 0) \cup (0, \infty)\)

\[
\lim_{x \to 0} \frac{\sqrt{x + c^2} - c}{x} = \lim_{x \to 0} \frac{\sqrt{x + c^2} + c}{\sqrt{x + c^2} + c} \cdot \frac{(x + c^2) - c^2}{x} = \lim_{x \to 0} \frac{1}{\sqrt{x + c^2} + c} = \frac{1}{2c}
\]

Define \(f(0) = 1/(2c) \) to make \(f \) continuous at \(x = 0 \).

109. \(h(x) = \lfloor x \rfloor \)

\(h \) has nonremovable discontinuities at \(x = \pm 1, \pm 2, \pm 3, \ldots \).

Section 1.5 Infinite Limits

1. \(\lim_{x \to 2^{-}} 2 \left| \frac{x}{x^2 - 4} \right| = \infty \)

2. \(\lim_{x \to -2^{-}} 2 \left| \frac{x}{x^2 - 4} \right| = \infty \)

3. \(\lim_{x \to \pi^{-}} \tan \frac{\pi x}{4} = -\infty \)

4. \(\lim_{x \to \pi^{-}} \tan \frac{\pi x}{4} = \infty \)

5. \(f(x) = \frac{1}{x^2 - 9} \)

\[
\begin{array}{cccccccc}
 x & -3.5 & -3.1 & -3.01 & -3.001 & -2.999 & -2.99 & -2.9 & -2.5 \\
 f(x) & 0.308 & 1.639 & 16.64 & 166.6 & -166.7 & -16.69 & -1.695 & -0.364 \\
\end{array}
\]

\(\lim_{x \to -3} f(x) = \infty \)

\(\lim_{x \to -3} f(x) = -\infty \)

7. \(f(x) = \frac{x^2}{x^2 - 9} \)

\[
\begin{array}{cccccccc}
 x & -3.5 & -3.1 & -3.01 & -3.001 & -2.999 & -2.99 & -2.9 & -2.5 \\
 f(x) & 3.769 & 15.75 & 150.8 & 1501 & -1499 & -149.3 & -14.25 & -2.273 \\
\end{array}
\]

\(\lim_{x \to -3} f(x) = \infty \)

\(\lim_{x \to -3} f(x) = -\infty \)
9. \(\lim_{x \to 0} \frac{1}{x} = \infty = \lim_{x \to 0} \frac{1}{x} \)

Therefore, \(x = 0 \) is a vertical asymptote.

13. \(\lim_{x \to -2} \frac{x^2}{x^2 - 4} = \infty \) and \(\lim_{x \to -2} \frac{x^2}{x^2 - 4} = -\infty \)

Therefore, \(x = -2 \) is a vertical asymptote.

17. \(f(x) = \tan 2x = \frac{\sin 2x}{\cos 2x} \) has vertical asymptotes at

\[x = \frac{(2n + 1)\pi}{4} = \frac{\pi}{4} + \frac{n\pi}{2}, \text{ } n \text{ any integer.} \]

21. \(\lim_{x \to -2} \frac{x}{(x + 2)(x - 1)} = \infty \)

\(\lim_{x \to -2} \frac{x}{(x + 2)(x - 1)} = -\infty \)

Therefore, \(x = -2 \) is a vertical asymptote.

\(\lim_{x \to -1} \frac{x}{(x + 2)(x - 1)} = \infty \)

\(\lim_{x \to -1} \frac{x}{(x + 2)(x - 1)} = -\infty \)

Therefore, \(x = 1 \) is a vertical asymptote.

25. \(f(x) = \frac{(x - 5)(x + 3)}{(x - 5)(x^2 + 1)} = \frac{x + 3}{x^2 + 1}, \text{ } x \neq 5 \)

No vertical asymptotes. The graph has a hole at \(x = 5 \).

11. \(\lim_{x \to 2} \frac{x^2 - 2}{(x - 2)(x + 1)} = \infty \)

\(\lim_{x \to 2} \frac{x^2 - 2}{(x + 1)(x - 2)} = -\infty \)

Therefore, \(x = 2 \) is a vertical asymptote.

15. No vertical asymptote since the denominator is never zero.

19. \(\lim_{t \to 0} \left(1 - \frac{4}{t^2} \right) = -\infty = \lim_{t \to 0} \left(1 - \frac{4}{t^2} \right) \)

Therefore, \(t = 0 \) is a vertical asymptote.

23. \(f(x) = \frac{x^3 + 1}{x + 1} = \frac{(x + 1)(x^2 - x + 1)}{x + 1} \)

has no vertical asymptote since

\(\lim_{x \to -1} f(x) = \lim_{x \to -1} (x^2 - x + 1) = 3 \)

27. \(s(t) = \frac{t}{\sin t} \) has vertical asymptotes at \(t = n\pi, \text{ } n \text{ a nonzero integer. There is no vertical asymptote at } t = 0 \text{ since} \)

\(\lim_{t \to 0} \frac{t}{\sin t} = 1. \)
29. \[\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \lim_{x \to -1} (x - 1) = -2 \]

Removable discontinuity at \(x = -1 \)

31. \[\lim_{x \to -1} \frac{x^2 + 1}{x + 1} = \infty \]

Vertical asymptote at \(x = -1 \)

33. \[\lim_{x \to 2} \frac{x - 3}{x - 2} = -\infty \]

35. \[\lim_{x \to 3} \frac{x^2}{(x - 3)(x + 3)} = \infty \]

37. \[\lim_{x \to -3} \frac{x^2 + 2x - 3}{x^2 + x - 6} = \lim_{x \to -3} \frac{x - 1}{x - 2} = \frac{4}{5} \]

39. \[\lim_{x \to 1} \frac{x^2 - x}{(x^2 + 1)(x - 1)} = \lim_{x \to 1} \frac{x}{x^2 + 1} = \frac{1}{2} \]

41. \[\lim_{x \to 0^+} \left(1 + \frac{1}{x} \right) = -\infty \]

43. \[\lim_{x \to 0^+} \sin x = \infty \]

45. \[\lim_{x \to \pi} \frac{\sqrt{x}}{\csc x} = \lim_{x \to \pi} \left(\sqrt{x} \sin x \right) = 0 \]

47. \[\lim_{x \to \pi} x \sec(\pi x) = \infty \quad \text{and} \quad \lim_{x \to (1/2)^-} x \sec(\pi x) = -\infty. \]

Therefore, \(\lim_{x \to (1/2)^-} x \sec(\pi x) \) does not exist.

49. \(f(x) = \frac{x^2 + x + 1}{x^3 - 1} \)

\[\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{1}{x - 1} = \infty \]

51. \(f(x) = \frac{1}{x^2 - 25} \)

\[\lim_{x \to 5} f(x) = -\infty \]

53. A limit in which \(f(x) \) increases or decreases without bound as \(x \) approaches \(c \) is called an infinite limit. \(\infty \) is not a number. Rather, the symbol

\[\lim_{x \to c} f(x) = \infty \]

says how the limit fails to exist.

55. One answer is \(f(x) = \frac{x - 3}{(x - 6)(x + 2)} = \frac{x - 3}{x^2 - 4x - 12} \)

57. \(S = \frac{k}{1 - r}, \quad 0 < |r| < 1. \) Assume \(k \neq 0. \)

\[\lim_{r \to 1} S = \lim_{r \to 1} \frac{k}{1 - r} = \infty \quad \text{(or} -\infty \text{if} \ k \ < \ 0) \]
61. \(C = \frac{528x}{100 - x}, \quad 0 \leq x < 100 \)

(a) \(C(25) = 176 \text{ million} \)

(b) \(C(50) = 528 \text{ million} \)

(c) \(C(75) = 1584 \text{ million} \)

(d) \(\lim_{x \to 100} \frac{528}{100 - x} = \infty \) Thus, it is not possible.

63. (a) \(r = \frac{2(7)}{\sqrt{625 - 49}} = \frac{7}{12} \text{ ft/sec} \)

(b) \(r = \frac{2(15)}{\sqrt{625 - 225}} = \frac{3}{2} \text{ ft/sec} \)

(c) \(\lim_{x \to 25} \frac{2x}{\sqrt{625 - x^2}} = \infty \)

65. (a) \[
\begin{array}{cccccccc}
 x & 1 & 0.5 & 0.2 & 0.1 & 0.01 & 0.001 & 0.0001 \\
 f(x) & 0.1585 & 0.0411 & 0.0067 & 0.0017 & \approx 0 & \approx 0 & \approx 0 \\
\end{array}
\]

\[
\lim_{x \to 0^+} \frac{x - \sin x}{x} = 0
\]

(b) \[
\begin{array}{cccccccc}
 x & 1 & 0.5 & 0.2 & 0.1 & 0.01 & 0.001 & 0.0001 \\
 f(x) & 0.1585 & 0.0823 & 0.0333 & 0.0167 & 0.0017 & \approx 0 & \approx 0 \\
\end{array}
\]

\[
\lim_{x \to 0^+} \frac{x - \sin x}{x^2} = 0
\]

(c) \[
\begin{array}{cccccccc}
 x & 1 & 0.5 & 0.2 & 0.1 & 0.01 & 0.001 & 0.0001 \\
 f(x) & 0.1585 & 0.1646 & 0.1663 & 0.1666 & 0.1667 & 0.1667 & 0.1667 \\
\end{array}
\]

\[
\lim_{x \to 0^+} \frac{x - \sin x}{x^3} = 0.1167 \ (1/6)
\]

(d) \[
\begin{array}{cccccccc}
 x & 1 & 0.5 & 0.2 & 0.1 & 0.01 & 0.001 & 0.0001 \\
 f(x) & 0.1585 & 0.3292 & 0.8317 & 1.6658 & 16.67 & 166.7 & 1667.0 \\
\end{array}
\]

\[
\lim_{x \to 0^+} \frac{x - \sin x}{x^4} = \infty
\]

For \(n \geq 3 \), \(\lim_{x \to 0^+} \frac{x - \sin x}{x^n} = \infty \).
67. (a) Because the circumference of the motor is half that of the saw arbor, the saw makes \(1700/2 = 850\) revolutions per minute.

(c) \(2(20 \cot \phi) + 2(10 \cot \phi)\): straight sections.

The angle subtended in each circle is

\[
2\pi - \left(2\left(\frac{\pi}{2} - \phi\right)\right) = \pi + 2\phi.
\]

Thus, the length of the belt around the pulleys is

\[20(\pi + 2\phi) + 10(\pi + 2\phi) = 30(\pi + 2\phi).
\]

Total length = 60 cot \(\phi + 30(\pi + 2\phi)

Domain: \((0, \frac{\pi}{2})\)

69. False; for instance, let

\[
f(x) = \frac{x^2 - 1}{x - 1} \text{ or } g(x) = \frac{x}{x^2 + 1}.
\]

71. False; let

\[
f(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ \frac{3}{x}, & x = 0. \end{cases}
\]

The graph of \(f\) has a vertical asymptote at \(x = 0\), but \(f(0) = 3\).

73. Given \(\lim \limits_{x \to a} f(x) = \infty\) and \(\lim \limits_{x \to a} g(x) = L\):

(2) Product:

If \(L > 0\), then for \(\epsilon = L/2 > 0\) there exists \(\delta_1 > 0\) such that \(|g(x) - L| < L/2\) whenever \(0 < |x - c| < \delta_1\). Thus, \(L/2 < g(x) < 3L/2\). Since \(\lim \limits_{x \to a} f(x) = \infty\) then for \(M > 0\), there exists \(\delta_2 > 0\) such that \(f(x) > M(2/L)\) whenever \(0 < |x - c| < \delta_2\). Let \(\delta\) be the smaller of \(\delta_1\) and \(\delta_2\). Then for \(0 < |x - c| < \delta\), we have \(f(x)g(x) > M(2/L)(L/2) = M\).

Therefore \(\lim \limits_{x \to a} f(x)g(x) = \infty\). The proof is similar for \(L < 0\).

(3) Quotient: Let \(\epsilon > 0\) be given.

There exists \(\delta_1 > 0\) such that \(f(x) > 3L/2\epsilon\) whenever \(0 < |x - c| < \delta_1\) and there exists \(\delta_2 > 0\) such that \(|g(x) - L| < L/2\) whenever \(0 < |x - c| < \delta_2\). This inequality gives us \(L/2 < g(x) < 3L/2\). Let \(\delta\) be the smaller of \(\delta_1\) and \(\delta_2\). Then for \(0 < |x - c| < \delta\), we have

\[
\left|\frac{g(x)}{f(x)}\right| < \frac{3L/2}{3L/2\epsilon} = \epsilon.
\]

Therefore, \(\lim \limits_{x \to a} \frac{g(x)}{f(x)} = 0\).

75. Given \(\lim \limits_{x \to a} \frac{1}{f(x)} = 0\).

Suppose \(\lim \limits_{x \to a} f(x)\) exists and equals \(L\). Then,

\[
\lim \limits_{x \to a} \frac{1}{f(x)} = \lim \limits_{x \to a} \frac{1}{\lim \limits_{x \to a} f(x)} = \frac{1}{L} = 0.
\]

This is not possible. Thus, \(\lim \limits_{x \to a} f(x)\) does not exist.